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a b s t r a c t 

Incomplete data – which fail to represent environmental effects or damage – are a signifi- 

cant challenge for structural health monitoring (SHM). Population-based frameworks offer 

one solution by considering that information might be shared, in some sense, between 

similar structures. In this work, the data from a group of aircraft tailplanes are considered 

collectively, in a shared (more consistent) latent space. As a result, the measurements from 

one tailplane enable damage detection in another, utilising various pair-wise comparisons 

within the population. 

Specifically, Transfer Component Analysis (TCA) is applied to match the normal condition 

data from different population members. The resulting nonlinear projection leads to a gen- 

eral representation for the normal condition across the population, which informs damage 

detection via measures of discordancy. The method is applied to a experimental dataset, 

based on vibration-based laser vibrometer measurements from three tailplanes. By con- 

sidering the partial datasets together, consistent damage-sensitive features can be defined, 

leading to an 87% increase in the true positive rate, compared to conventional SHM. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

1. A population-based approach to SHM 

Data-driven frameworks are critical within Structural Health Monitoring (SHM) [1] , as well as related fields, including: 

condition monitoring [2] , non-destructive testing [3,4] , and prognosis and health management [5] . In general terms, machine

learning algorithms are used to detect patterns in previously-recorded data, to infer the condition of the system (operational, 

environmental, or health) given measurements into the future. Health and/or performance predictions are valuable, as they 

improve maintenance, decision making and efficiency [6] . 

The development of machine learning methods for health monitoring of engineering systems is prevalent in the literature 

[7,8] ; however, data-models typically require large amounts of training data to learn a variety of patterns, thus enabling

good generalisation to future measurements. In SHM, however, the data available for training are often highly restricted and 

unrepresentative of future observations [9] . Consider a rail-network, for example: acquisition systems might record several 

years of data from operational lines; on the other hand, a newly-built line will have limited data. In this case, the absence

of a priori measurements inhibits the use of conventional (supervised) data modelling for monitoring purposes. 
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One solution to incomplete training data adopts a Population-Based approach to SHM (PBSHM) [10–12] . By considering 

groups of similar systems (or models) together, information might be shared or transferred, in some sense, between mem- 

bers of that population. Returning to the rail-network example: measurements from one (or several) line(s) might prove 

useful to inform the data-modelling of another. The assumption here is that patterns in one dataset resemble patterns in 

another. Therefore, a critical step for PBSHM is establishing which systems are similar enough to share information – some 

similarity measures have been proposed in [11] . By transferring information between similar systems, the predictive per- 

formance of pattern recognition algorithms should significantly improve. Caution is required, however: if dissimilar systems 

are used to inform each other, the predictive performance can be degraded, leading to negative transfer [13] . 

In this work, the concept of knowledge transfer between groups of similar systems is demonstrated for SHM via an 

experimental case study. The data available for training are extended by considering the measurements from a population 

of structures collectively, in a shared, more consistent, latent space. The experiments show that, by considering the partial 

datasets together, the reliability of damage-detection across the population can increase. 

The layout of the paper is as follows. Section 2 summarises transfer learning via domain adaptation, in the context of

damage-detection, while Section 3 covers related work. Section 4 explains the aircraft tailplane experiments, as well as 

benchmark techniques, to motivate the need for transfer learning. Section 5 explains the TCA algorithm, and how it can be

applied to inform damage detection. Section 6 presents the results and discussion, while Section 7 offers concluding remarks 

and future considerations. 

2. PBSHM and transfer: domain adaptation 

Machine learning methods typically assume that the data between training and testing are drawn from the same feature 

space and underlying data distribution [13,14] . For SHM, this implies no change in modelled distributions from inference to 

the monitoring of real-time signals. In practice, the assumption of stationarity [15,16] can break down for various reasons: 

e.g. cold temperature effects can lead to a shift in the distribution for the normal condition data [17] ; alternatively, one

might look to use the data from one system to inform the model of another – as previously discussed. 

Once the underlying distribution has changed, most statistical models must be completely re-learnt to ensure good gen- 

eralisation [13] . Alternatively, transfer learning can accommodate for changes in the data distribution, task, or feature space. 

At this stage, it is useful to define domain and task objects [18] : 

• A Domain D = { X , p( X ) } is an object that consists of a feature space X and a marginal probability distribution p( X )

over a finite sample of feature data X = { x i } n i =1 ∈ X . 

• A Task T = { Y , f (·) } is a combination of a label space Y and a predictive model/function f (·) . The function f : X → Y 

is unknown and inferred from the training data, while the finite set of corresponding labels is y = { y i } n i =1 
∈ Y . 

Considering vibration-based monitoring, frequency-domain observations ( x i ) from rotating machinery could represent the 

feature space { x i } n i =1 ∈ X , while the model f (·) might predict the condition of the machine bearings – classified by labelling

y i ∈ Y ; for example: normal ( y i = 0 ), damaged ( y i = 1 ), or environmental effects ( y i = 2 ). 

This work considers a transfer problem between two domains at a time, which is typical in the literature [13] . Firstly,

the source domain D s is a finite set of observations and corresponding labels, i.e. 
{(

x s 
i 
, y s 

i 

)}n s 

i =1 
where { x s 

i 
∈ X s , y s 

i 
∈ Y s } . The

second is referred to as the target domain D t with observations and (potentially unknown) labels, i.e. 
{(

x t 
i 
, y t 

i 

)}n t 

i =1 
where 

{ x t 
i 
∈ X t , y t 

i 
∈ Y t } . 

Following Pan and Yang [13] , transfer learning can be defined generally, 

Given a source domain D s and task T s , as well as a target domain D t and task T t , transfer learning aims to improve the

target predictive function f t (·) in D t , using the knowledge in D s and T s , where D s � = D t , or T s � = T t . 

For the case study presented here, the source and target domains are associated with different structures, while the 

(common) task is to represent/approximate the normal condition data to improve damage detection. In other words, the 

task is a type of one-class classification [19] , where y i = 0 ( normal ) ∀ i in training. The goal is, therefore, to match the normal

condition distributions between source and target systems, to improve the predictive performance (primarily for the target 

structure) though a shared model f . 

These ideas align closely with those of transductive transfer learning [20] . Transductive transfer considers that the source 

and target tasks are the same ( T s = T t ) while the domains are different ( D s � = D t ). Relating back to the experiments in

this work, the model of the normal-condition data is the common task f, while the features and distributions from each

structure represent source/target domains. 

Specifically, domain adaptation is applied as a form of transductive transfer learning [20] ; this is appropriate when a

model f (·) will not generalise between the source and target domains due to differences between the distributions p( x s 
i 
)

and p( x t 
i 
) [18] . Transfer Component Analysis (TCA) [14] is applied, which looks to match source and target distributions in a

shared latent space ( Z = { z i } n s + n t i =1 
∈ Z ) where the data properties can be preserved. In the latent space Z , a shared model

( f = f s = f t ) can be learnt for novelty/damage detection. The population-based framework to match normal condition data

between structures is visualised in Fig. 1 . Algorithm details are provided in Section 5 . 
2 
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Fig. 1. Visualisation of domain adaptation for knowledge transfer between source and target structures, distribution matching for the normal condition 

data. Ellipses represent clusters of data from the source (black) and target (red) structures. In the original space x i ∈ X , the distributions for each structure 

(i.e. domain) are different; in the latent space z i ∈ Z (a transformation of x i ) the distributions have been (approximately) matched. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

3. Related work 

A ‘shared’ model to represent a population of systems is closely related to the concept of the form for PBHSM [10] .

The form is typically represented by a model of some consistent feature recorded from members within a population. The 

model should capture the essential nature as well as variance of systems within the group. Future measurements can then 

be monitored through comparisons to the form . In previous work [10] , a (Gaussian process) regression of the power curve

was used to represent the form for a wind turbine population. The framework in [10] does not attempt to match the data

distributions (or tasks) between members through transfer learning; instead, the population data are considered collectively 

in the original data-space, and the tasks are modelled separately. 

The majority of literature concerning transfer learning for SHM focusses on image classification through Convolutional 

Neural Networks (CNNs), e.g. [21–24] . Typically, applications consider crack detection [21–23] , and fine tuning the parameters 

of a CNN trained on the source domain to aid generalisation in the target domain. Generally, fine tuning does not aim to

transfer label knowledge from source to target domains; instead, it focusses on re-purposing expensive-to-train ‘deep’ neural 

networks [18] . 

In addition to fine tuning, neural networks have been applied for domain adaptation within SHM, for example [25–27] .

These techniques use a neural network to define the mapping from the domain-data into a shared latent space, where a

classification model is learnt. An interesting study is presented by Michau and Fink [28] , demonstrating domain adaptation 

for condition monitoring, applied to a fleet of power plants. Unsupervised feature alignment is achieved using a variational 

auto-encoder; a new loss function is introduced to preserve the inter-point relationship between the inputs and latent 

features. Feature alignment is further enforced with an origin discriminator, trained in an adversarial manner [28] . The 

dataset for this application is large (tens of thousands of measurements), allowing for the inference of a relatively highly- 

parametrised network. 

Besides neural networks, a paper by Chakraborty et al. [29] applies a probabilistic method for transfer learning, by defin-

ing an objective function such that information in the source and target domains is considered jointly. This application 

focusses on the important issue of sensor coverage (for a single structure) rather than transferring information between 

similar systems. 

Domain adaptation has been discussed generally for SHM by Gardner et al. [18] , 30 ]; this work considers methods for

knowledge transfer, comparing tools to aid supervised damage classification. Case studies include a simulated source and tar- 

get domain, as well as a simulated source and experimental target structure. In other words, two structures are considered 

per case study, at least one of which corresponds to a simulated system. 
3 
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3.1. Novel contribution 

Considering a population-based approach to SHM, transfer learning is applied here to an experimental case study, to aid 

unsupervised damage detection. The SHM data concern laser vibrometer measurements from a population of three aircraft 

tailplanes (i.e. three pairs of structures). To extend the concept of the population form [10] , transfer learning is applied

to infer a shared model, representing the underlying distribution of the normal condition data for similar systems – as 

visualised in Fig. 1 . The model is utilised for damage detection through comparisons to future data. 

Rather than considering transfer from a single source to a target structure, a population of three tailplanes are consid- 

ered together, with (pair-wise) transfer between each member. All members correspond to an experimental rig, rather than 

simulated systems. Unlike various neural networks, the proposed methods are suited to small/incomplete data, which are 

found in many practical examples of SHM. 

4. Experimental data: aircraft tailplane population 

Three tailplanes from a Piper PA-28 aircraft are considered in the experiments. Two planes (labelled A and B) corre- 

spond to ‘Arrow’ variants of the PA-28, while the third corresponds to a ‘Cherokee’ variant (labelled C). Following separation 

from the aircraft, the elevators and wing-tips were removed from each tailplane. All wing sections have the same airfoil 

(NACA0012) and chord (0.76 m) with different spans: tail C is 3.62 m long, while A and B are 2.75 m long. 

Each plane was cut in half, to create three pairs of similar wing structures. These are referred to as: A1/A2, B1/B2,

and C1/C2 – for port/starboard sides (1/2) respectively. The A plane was cut symmetrically, while the B plane was cut 

asymmetrically – the port side (B1) has a longer section at the original connection, while the starboard side (B2) is shorter

– dimensions are provided in Fig. 2 . Lastly, the C plane was cut symmetrically, with damage artificially introduced to the

starboard wing (C2) by removing a rectangular section from the skin – again, dimensions are provided in the schematic in 

Fig. 2 . The structures are also shown in Fig. 3 , where the damage to C2 is visible. It should be considered that the artificial

damage imitates a fairly large, significant fault. The mass difference between the A planes was 1.89% (4.85 kg and 4.76 kg

for A1/A2); for the B planes it was 9.39% (4.26 kg and 4.66 kg for B1/B2); for the C planes it was 0.56% (6.74 kg and 6.70 kg

for C1/C2) 1 . 

Following PBSHM terminology [10] , the A and B tailplanes would be referred to as weakly homogeneous . In general terms,

this implies the structures are nominally identical, with slight variations. That is, while each structure is the same model 

(Arrow), the port and starboard sides are mirrored; additionally, for B1/B2 the cut is asymmetric, leading to differences in 

mass and geometry. 2 When including the C planes, the group becomes heterogeneous [12] . While each structure is a tailplane

wing, they correspond to two different models of aircraft (Cherokee/Arrow). Despite differences, however, the structures 

remain similar : the chord and aerofoil are the same design, and the A/B planes can be viewed as subsets of the C plane

geometry (refer to Figs. 2 and 3 ). Homogeneous and heterogeneous structures for PBSHM are more formally defined (through 

graphical representations) in [11] . 

4.1. Vibration tests 

Each tailplane was excited with Gaussian white noise using an electromagnetic shaker. The tailplanes were hung free-free 

from a metal frame, and the shaker was attached to the rear, as demonstrated in Fig. 4 . The responses of the structures were

recorded using a scanning laser Doppler vibrometer. Laser scanning vibrometry is beneficial, as it measures the response 

of a large surface in a single test, unaffected by the mass of sensing devices (measurements are contact free). The laser

vibrometer was a tripod-mounted Polytec PSV-400 scanning head, with a PSV-A-420 geometry scan unit, controlled by a 

Polytec OFV-50 0 0 controller and a JSV-500 junction box. 

The frequency bandwidth during testing was 1 kHz with a sample rate of 2.56 kHz, leading to a resolution of 0.3125 Hz

in the frequency domain (3200 spectral points). For tailplanes A and B, there were 180 scan points on the port and starboard

wings (each). For the C plane, due to its larger span, there were 295 scanning points on the port and starboard wings (each).

Scanning and forcing locations were consistent (as far as possible) between port and starboard pairs: the scanning grid for 

each pair is compared in Fig. 5 , while the forcing location is included in Fig. 2 . There are six averages per response point

when storing frequency domain measurements – the Frequency Response Functions (FRFs, H1 estimator) and coherence 

functions are used in this work. 

Each tailplane test (A, B, and C) is summarised below: 

A plane PA-28 Arrow : symmetrically cut, 180 response points for port (A1) and starboard (A2) wings (each), 

1.89% mass difference between port and starboard. 

B plane PA-28 Arrow : asymmetrically cut, 180 response points for port (B1) and starboard (B2) wings (each), 

9.39% mass difference between port and starboard. 
1 Percentages are w.r.t. the lightest wing. 
2 Manufacturing tolerances and imperfections (e.g. small dents or cracks) should also be considered. 

4 
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Fig. 2. Schematic, units are in mm. The reference point for scanning is { x = 0 , y = 0 } . The red cross indicates the forcing location, while the red dashed 

square shows the artificial damage in C2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

C plane PA-28 Cherokee : symmetrically cut, 295 response points for port (C1) and starboard (C2) wings (each), 

0.56% mass difference between port and starboard. 

Fig. 6 shows the summed FRF over the response locations for each tailplane. The response functions are self-normalised 

in the log-space through the Z-score (subtracting the sample mean and dividing by the standard deviation) using a subset of

training data. 3 Clearly, the FRFs in Fig. 6 differ significantly from structure to structure, even comparing port and starboard 

wings of the same plane. In agreement with the modal analysis by Papatheou et al. [31] , however, some consistent patterns

can be observed between port and starboard wings – as well as between A, B and C pairs. Intuitively, there are more

similarities at lower frequencies of the response for A and B, while the discrepancy increases at higher frequencies. Even 

considering the C plane (including damage), a low-frequency mode for all structures appears at around 75 Hz. 

4.2. Problem set-up and feature selection 

To define a knowledge transfer problem, each wing pair is associated with its own domain – A, B and C. In this way,

the experiments are viewed as a three-domain problem: domains A and B contain normal condition data, while domain C 

has both normal and damage data. It is assumed, therefore, that the normal data from port and starboard sides are sampled

from the same underlying distribution. 

Considering this approximation, it is necessary to select features that are (relatively) consistent between the port and 

starboard wings (of A and B) for transfer learning to make sense. 4 Based on engineering/physics-based knowledge of the 

FRF, Fig. 6 is inspected visually, considering wings A and B only. According to the framework in [32] , the window between

56.56 and 81.5 6Hz can be selected as a consistent feature, highlighted with dotted lines. This region of the response covers
3 Normalised features are better suited to Transfer Component Analysis, as well as the benchmark methods (Principal Component Analysis). 
4 For the C plane, the features do not have to be consistent, as the starboard wing (C2) is damaged. 

5 
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Fig. 3. Tailplane structures, including artificial damage in wing C2 – dimensions are provided in Fig. 2 . 

 

 

 

 

 

 

 

 

a common mode for the normal condition FRFs. The consistency of this feature is logical, as the response below 50 Hz is

increasingly influenced by rigid body dynamics, leading to discrepancies in the response for the B tailplanes; here, the mass 

imbalance (due to the asymmetric cut) can be viewed as an additional lumped mass to the B2 system. On the other hand,

higher modes become increasingly sensitive to small imperfections in the skin, ribs, or stringers of the tailplane, thus, the 

response for the normal data becomes increasingly inconsistent. 

At this stage, the authors emphasise that feature selection remains critical in transfer learning, as with other forms of 

machine learning. If the features prove too dissimilar, or represent different information, the risk of negative transfer can 

increase dramatically, even for very similar systems [12,13] . In the worst-case scenario, predictions can be inferior to con- 

ventional domain-wise methods. In consequence, the available features should influence the choice in model and associated 

parameters to aid successful knowledge transfer, particularly in an unsupervised damage detection setting. 

To define the transfer learning dataset, observations are re-sampled from uncertain representations of the experimental 

FRFs. According to [33] , the coherence function γp (ω) can be used to estimate the uncertainty in the magnitude of the

response at frequency ω. Specifically, assuming Gaussian statistics at each response point p, the standard deviation in the 

FRF magnitude is [34] , 

σ (| H p (ω) | ) = 

√ 

1 − γ 2 
p (ω) 

| γp ( ω) | √ 

2 N 

| H p ( ω) | (1) 

where N = 6 , the number of repeats for frequency-domain measurements. The associated uncertainty can be propagated to 

the summed FRF via a Monte-Carlo method [35] – this involves iterating the following steps: (i) a sample is taken from the

uncertain FRF at each response point | H p (ω) | , (ii) the samples are summed 

∑ 

p | H p | and then stored. Steps (i) and (ii) are

repeated for a large number of iterations (10 0,0 0 0), then the sample mean and standard deviation are calculated from the

batch of summed FRFs. Fig. 7 shows the resulting mean and deviation for the selected feature, between 56.56 and 81.56 Hz,

for all tailplanes. 

Lastly, observations are sampled from the uncertain feature shown in Fig. 7 for domains A, B and C. The multi-domain

data are defined as follows: 

A plane domain D A , data 
{

x A 
i 

}n A 

i =1 
, 200 observations of normal condition data (100 each from A1/A2). 

B plane domain D B , data 
{

x B 
i 

}n B 

i =1 
, 200 observations of normal condition data (100 each from B1/B2). 
6 
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Fig. 4. Test set-up example – shown for PA-28 Arrow tailplane. 

 

 

 

 

 

 

C plane domain D C with data 
{

x C 
i 

}n C 

i =1 
, 100 observations of normal condition data (C1) and 100 observations 

of damage data (C2). 

Importantly, the training data are defined as a random subset of 50% of the samples from the port-side FRFs only : A1/B1/C1

(i.e. 25% of the total data in each domain). Therefore, only data corresponding to the normal condition are available for

training. The testing data include the remaining 50% of samples from the port wing, and the starboard examples. Thus, 

testing will verify the approximation of a single domain per tailplane pair, as well as standard generalisation. 

The problem here is one of exclusive outlier analysis [36] : only normal data are available for training, and the task T is

to model the normal data data through f . Predictions then determine if future data are samples from the same underlying

distribution (inlying), or not (outlying). 

4.3. Benchmark: principal component analysis for novelty detection 

Conventional damage detection is applied via Principal Component Analysis (PCA) and the Mahalanobis distance [36] , 

whereby each domain is considered separately . These results are useful to motivate the need for transfer learning. 

Firstly, PCA is applied to each domain, to project the data into a two-dimensional subspace. Note, two-dimensional sub- 

spaces are used throughout for consistency, and to aid visualisation. Briefly, PCA is a linear projection X → Z , where

{ x i } ∈ X ∈ R 

M and { z i } ∈ Z ∈ R 

D . In the Z subspace, the d th projected dimension is a weighted sum w d of the original
7 
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Fig. 5. Scanning grid corresponding to response locations: blue dots indicate the port wing (A1/B1/C1), red stars indicate starboard wing (A2/B2/C2). The 

reference point { x = 0 , y = 0 } is shown on the wing schematic in Fig. 2 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

8 
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Fig. 6. Frequency response functions for tailplane pairs, normalised in the log-space. Dotted lines highlight the range of consistent features selected for 

transfer learning. 

 

 

 

 

 

 

 

 

 

features, 

z id = w 

� 
d x i (2) 

A total of D projection vectors { w 1 , . . . , w D } ( M-dimensional) are defined, such that d ∈ { 1 , . . . , D } . Thus, D is the dimension-

ality of the desired subspace (in this case D = 2 ), while M is the dimensionality of the original feature ( M = 70 , as there are

70 frequency bins in the response between 56.56 and 81.56 Hz). 

PCA uses the variance in the projected space z i ∈ Z , R 

D as a criterion for the optimal weight-vector for each dimension

{ w 1 , . . . , w D } . Conveniently, the optimisation can be solved by defining a Lagrangian (an intuitive proof is available in Rogers

and Girolami [35] ) and taking the (partial) derivative with respect to w d . In this form, the optimal weights are the solution

to a standard eigenvector/value problem, 

S w d = λd w d (3) 

where S is the sample covariance of the original data, S = 

1 
n 

∑ n 
i =1 x i x 

� 
i 

(since the data are normalised ). The eigenvector 

with the highest eigenvalue corresponds to the projected dimension with maximum variance w 1 , while the second highest 

eigenvalue corresponds to the projection with the second highest variance w 2 , and so on [35] . 

Only the training data should be used to find w d for each domain. The weights { w 1 , w 2 } can then be used to project

the complete data into a two-dimensional subspace. Here, the sample mean μ and covariance � can be calculated for 

{ z i } n i =1 
to approximate the underlying distribution for the (normal) training data, assuming they are Gaussian distributed 

f = p( z i ) ∼ N ( μ, �) [36] . 

The PCA subspace for the tailplane domains (A, B and C), as well as the Gaussian model for normal data f, are shown

in Fig. 8 . All the test data appear to be sampled from the same underlying distribution for A and B – this is intuitive, con-

sidering the aims of feature selection, as the test data correspond to the normal condition only. However, the distributions 

also remain similar in domain C, despite including outliers (the damaged wing, C2). In consequence, the PCA space appears 

insensitive to the novelty (damage) of interest. 

To quantify similarity , the i th datum in the two-dimensional subspace ( z i ∈ Z ) can be compared to the normal condition

( f ) through the Mahalanobis-Squared-Distance (MSD). This measure of discordancy is regularly used for outlier analysis and 
9 
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Fig. 7. Feature between 56.56 and 81.56 Hz, for all tailplanes. Shaded region shows one standard deviation around the mean. 

Fig. 8. Domain-wise PCA. Filled markers • represent training data, hollow markers ◦ represent test data. The dashed line represents the 95% confidence 

ellipse for f . 
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Fig. 9. Domain-wise Mahalanobis distance. Filled markers • represent training data, hollow markers ◦ represent test data. The solid vertical line separates 

the damage data (C2), the dashed line shows the critical value for damage detection. 

 

 

 

 

 

 

 

 

 

 

damage detection [1,36,37] , 

ζ 2 
i = ( z i − μ) � �−1 ( z i − μ) (4) 

In words, ζ 2 
i 

is the distance of z i from the centre of the training data, normalised by the variance. Generally, an observation

is considered outlying if ζ 2 
i 

passes a threshold or critical value; here, like the data, the threshold is determined via a Monte

Carlo method [1,36,37] to define the 95% critical value. 

Fig. 9 shows the MSD for the data in each domain; these distances agree with observations made from the PCA space.

The test data ( ◦) for A and B are inlying, as they correspond to normal condition FRFs. For domain C, however, the damage

data (C2) incorrectly appear as inlying. To reiterate, the feature space defined by PCA is insensitive to damage, and the

outliers are being masked by the normal condition [37] . 

Before transfer learning, Kernel PCA (KPCA) is applied to extend conventional domain-wise damage detection. 5 Via a ker- 

nel substitution, KPCA defines a nonlinear transformation of the original feature to maximise variance. Recalling Eq. (3) (as- 

suming zero-mean for the projected data) the covariance matrix S = 

1 
n 

∑ n 
i =1 x i x 

� 
i 

is replaced with, 

C = 

1 

n 

n ∑ 

i =1 

φ( x i ) φ( x i ) 
� (5) 

where φ( x i ) is a nonlinear transform into an n -dimensional feature space. Standard PCA is applied in the new feature space,

which implicitly defines a nonlinear projection in the original space, x i ∈ X [38] . Conveniently, the eigenvalue problem 

C w d = λd w d can be solved without having to work explicitly in the nonlinear feature space through the kernel trick . A nice

proof is available in Bishop [38] , which leads to the following expression for a nonlinear projection (in X ), 

z id = 

n ∑ 

j=1 

a dj k ( x i , x j ) (6) 

where a d is the d th largest eigenvector for the problem K a d = λd n a d . The kernel function is k ( x i , x j ) = φ( x i ) 
� φ( x j ) , and K

is the kernel matrix, with elements K [ i, j] = k ( x i , x j ) ∀ i, j ∈ { 1 , . . . , n } . 
Any valid choice of kernel k (·) can be used; for consistency, the Radial-Basis Function (RBF) is used throughout this work,

k ( x i , x j ) = exp 

{ || x i − x j || 2 
2 l 2 

}
(7) 

The parameter l defines the length-scale . Generally speaking, the kernel encodes the degree of coupling between two points 

in the feature space. It is widely known that defining kernel hyperparameters in an unsupervised (damage detection) setting 

proves to be challenging and application specific [39,40] . The user can employ techniques such as the median heuristic

[40] or reconstruction metrics [39] to help select this parameter. For consistency, the length scale is set to l = 16 throughout 
5 Additionally, the KPCA benchmark will be more directly comparable to transfer component analysis. 
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– this value was found to define an acceptable reconstruction error for KPCA, while remaining close to the median heuristic 

for the tailplane population data. 

Again, the subspace and MSDs produced by KPCA lead to similar issues of masking, shown in Appendix A , such that

the MSDs for damage data fail to pass the detection threshold. Clearly, single domain projections that maximise variance 

(PCA/KPCA) produce feature spaces that are insensitive to damage: an alternative projection is needed to aid separation of 

the damage data in D C . Transfer learning via domain adaptation offers one solution, such that normal data from all domains

are considered together in a shared subspace. By extending the size of the effective training set, the criterion for projection

can be adapted, and transfer learning should enable damage detection in D C , while remaining general in domains D A and

D B . 

5. Transfer component analysis for novelty detection 

Transfer Component Analysis (Pan et al. [14] ) is used to match the distributions of the normal data from each tailplane

in a shared latent space – i.e. Fig. 1 . The general assumption is that the marginal distributions between the source and

target domains are different, such that p( X s ) � = p( X t ) . Therefore, TCA looks to find a common latent representation for X s =
{ x s 

i 
} n s 

i =1 
∈ X and X t = { x t 

i 
} n t 

i =1 
∈ X which preserves the data configuration after transformation [14] . Specifically, a nonlinear

transform of the feature space is learnt (similar to KPCA) ψ : X → Z , where the marginals are approximately matched , 

p ( ψ ( X s ) ) ≈ p ( ψ ( X t ) ) (8) 

Additionally, the conditionals are assumed consistent, i.e. p ( Y s | ψ ( X s ) ) = p ( Y t | ψ ( X t ) ) . For damage detection in this context, 

these assumptions imply that: while the training data are distributed differently in each domain, they all correspond to 

normal structures, which can be matched in the latent space. 6 

In brief terms, the transform ψ minimises the distance between the source and target data by defining a nonlinear 

mapping into a Reproducing Kernel Hilbert Space H (details/proofs can be found in Pan et al. [14] ). By virtue of the kernel

trick, the Maximum Mean Discrepancy (MMD) can then be used as the criterion to minimise the difference between the 

empirical means for the source and target data in the latent space [14] , 

Dist 

[ 
p ( ψ ( X s ) ) , p ( ψ ( X t ) ) 

] 
= 

∣∣∣∣∣
∣∣∣∣∣

1 

n s 

n s ∑ 

i =1 

ψ ( x 

s 
i ) −

1 

n t 

n t ∑ 

i =1 

ψ ( x 

t 
i ) 

∣∣∣∣∣
∣∣∣∣∣

2 

H 

= tr ( K L ) (9) 

here, K ∈ R 

(n s + n t ) ×(n s + n t ) is the kernel matrix for both the source and target data, X = X s ∪ X t ∈ R 

(n s + n t ) ×M (including cross 

domain distances) and L is the MMD matrix, such that, 

L i, j = 

⎧ ⎨ 

⎩ 

1 
n 2 s 

x i , x j ∈ X s 

1 
n 2 t 

x i , x j ∈ X t 

−1 
n s n t 

otherwise 

(10) 

A matrix W ∈ R 

(n s + n t ) ×D can be inserted to define a low-rank kernel embedding ˜ K = K W W 

� K , which transforms the 

feature vectors into the D -dimensional latent space, where D < n t + n s (in this case, D = 2 , as with PCA). The embedding of

the i th point in the latent space becomes, 

z i = [ W 

� K ] [: ,i ] , z i ∈ R 

D 

the matrix subscript [: , i ] refers to the i th column. Considering the kernel embedding into the latent subspace, the distance

can be re-written [14] , 

Dist 

[ 
p ( ψ ( X s ) ) , p ( ψ ( X t ) ) 

] 
= tr 

(
( K W W 

� K ) L 
)

(11) 

= tr 
(
W 

� K L K W 

)
(12) 

For a given kernel, the optimal weights can be determined by minimising (12) ; in this way, the source and target data

are brought together in the subspace: 

min 

W 

= tr 
(
W 

� K L K W 

)
+ α tr 

(
W 

� W 

)
s.t. W 

� K H K W = I D (13) 

The term α tr 
(
W 

� W 

)
regularises the complexity of the projection, such that α is a trade-off parameter. The constraint 

W 

� K H K W = I D is added to prevent the trivial solution W = 0 , whereby all the data are transformed onto the origin. I D is
6 As this is exclusive outlier analysis, the damage data appear in testing. 
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the identity matrix, dimension D . Finally, H is a centring matrix, where H = I ns + nt + 

1 
n s + n t 1 , and 1 is a (n s + n t ) × (n s + n t )

matrix of ones. 

As with PCA, the optimal transform can be defined as another eigenvalue problem, by defining a Lagrangian from 

(13) and taking the partial derivative w.r.t. W [14] , [
( K L K + αI ) 

−1 K H K 

]
w d = λw d (14) 

where W = { w d } D d=1 
correspond to the D leading eigenvalues. 

6. Results and discussion 

As discussed, D = 2 for the TCA subspace in the tailplane applications; the RBF kernel is used (7) with length l = 16

(to be consistent with PCA/KPCA). In line with other work [14] , the regularisation trade-off parameter is set to α = 0 . 1 ;

in fact, for these data, any value α > 1 × 10 −10 was found to avoid rank deficiency of the denominator for the generalised

eigendecomposition (14) . 

Three, pair-wise transfer experiments are investigated: 

• A ↔ C: using the normal data from D A and D C to improve damage detection in D C 

• A ↔ B: using the normal data from D A and D B to ensure generalisation in both D A and D B 

• B ↔ C: using the normal data from D B and D C to improve damage detection in D C 

Considering exclusive outlier analysis, the distinction between the source and target domains becomes less relevant, as 

both domains are labelled/assumed normal (i.e. y s 
i 
= y t 

i 
= 1 ∀ i in training). As a result, the proposed experiments cover all

possible source/target combinations. That said, in this application, there is a practical focus to improve damage detection in 

domain C. 

Interestingly, as each domain is implicitly labelled during exclusive outlier analysis, unsupervised TCA becomes (some- 

what) analogous to a multi-task learning 7 ; for details, the reader is referred to [13] . 

6.1. Knowledge transfer: A ↔ C 

TCA successfully defines damage-sensitive representation of the data in the latent space Z , by distribution matching for 

D A and D C . Visually, Fig. 10 a shows that the damage data (C2) have been projected out from the normal condition cluster

f . All of the MSD values in Fig. 10 b that correspond to damage are correctly flagged as outlying, with zero false negatives

(below the threshold). 

The results are quantified and compared to the PCA benchmarks in Fig. 10 c. For each domain, the relevant metric(s) is

(are) displayed. For domain A, the True Negative Rate (TNR) is provided only (as all the data are inlying), 

TNR = 

correctly predicted inliers 

number inliers in the test set 

For domain C, the True Positive Rate (TPR) is also provided, 

TPR = 

correctly predicted outliers 

number of outliers in the test set 

The TPR for domain C is important, as TPR ≈ 1 indicates sensitivity to damage. On the other hand, a TNR ≈ 1 is necessary

to indicate good generalisation to test examples of the normal condition. 

Therefore, Fig. 10 c quantifies the success of transfer learning, which enables damage detection in domain C through 

distribution matching of the normal data from D A . Specifically, the model remains general, with the TNR at 1, while the TPR

improves significantly: from 0.13 and 0.00 for PCA and KPCA (respectively), to TPR = 1 through TCA. In other words, domain

adaptation corresponds to an 87% TPR increase compared to conventional (domain-wise) damage detection. 

When assuming Gaussian statistics for f, with a 95% threshold, it is acknowledged that the TNR should be approximately 

0.95 (corresponding to a 5% false positive rate). The low number of false positives is (unsurprisingly) due to the fact that data

appear non-Gaussian in the Z -space; the simplified representation proves suitable, however, to detect outlying observations 

in this application, as in previous work [1,7,36,37] . 

6.2. Knowledge transfer: A ↔ B 

When distribution matching between D A and D B , the model of the normal condition data remains general between 

the port and starboard sides. Good generalisation between A and B verifies the approximation of a single domain for each

tailplane pair. Generalisation can be observed visually in Fig. 11 a, as the data from all structures appear similar and approx-

imately from the same underlying distribution. 
7 Where a common task f is improved for multiple (labelled) domains, as opposed to transferring label information from a source to target domain [13] . 
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Fig. 10. Transfer learning for novelty detection between tailplane A and tailplane C. 

 

 

Some drift can be observed for the data sampled from B2, which leads to a false positive in the MSDs (normal data

crossing the threshold) in Fig. 11 b. While this situation is not ideal, it is unsurprising physically, due to the mass difference

between the B1/B2 structures. In consequence, a single outlier represents good generalisation for the normal data across 

domains A and B, such that the TNR remains at 99%. 8 
8 The TPR is not provided in Fig. 11 c for domains A/B, as they contain inlying (negative) data only. 
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Fig. 11. Transfer learning for novelty detection between tailplane A and tailplane B. 

 

 

 

 

 

 

6.3. Knowledge transfer: B ↔ C 

The final experiment matches the data from B with the normal data from C. As with transfer between A and C ( Fig. 10 ),

the data from the B can also be used to define damage-sensitive features in the shared latent space. Again, the features are

shown visually in the Z -space (in Fig. 12 a) and through the MSD (in Fig. 12 b) where the damage data (C2) are distinct from

the remaining normal data (B1/B2/C1). In agreement with transfer from A to B, there is drift in the normal data from D B ,

leading to a false positive for B2 (i.e. TNR = 0.99). This is a small trade-off, however, considering the mass differences in

B1/B2 and the increase in sensitivity to damage for domain C (again, 87% compared to conventional methods) with no false

negatives (TPR = 1). 
15 
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Fig. 12. Transfer learning for novelty detection between tailplane B and tailplane C. 
7. Concluding remarks 

A population-based approach to SHM has been utilised to share information between a group of similar (but not identi- 

cal) structures. Specifically, transfer learning, via domain adaptation, has been utilised for damage detection through an ex- 

perimental case study concerning aircraft tailplanes. By considering the collective data from a population of three tailplane 

pairs, knowledge transfer enables the definition of damage-sensitive features, where conventional methods fail (domain-wise 

PCA/KPCA). Specifically, Transfer Component Analysis (TCA) is utilised to match the normal condition data from different 

structures through a nonlinear transformation onto a shared latent space, which defines a damage-sensitive representation. 

When distribution matching, TCA relies on a statistical distance between observations from different structures; thus, there 
16 
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must be enough data to embed the underlying distributions through an appropriate kernel. Utilising different pair-wise 

comparisons across the population, transfer learning leads to an 87% increase in the sensitivity to damage (true positive 

rate). 

As with all forms of machine learning, feature and model selection are application specific; these steps prove critical 

to the success of transfer learning for unsupervised damage detection. Future work should investigate ways in which fea- 

ture/model selection can be automated and enhanced within unsupervised transfer learning for novelty detection. 
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Appendix A. Kernel PCA—Masked outliers domain C 
Fig. A13. Domain-wise KPCA. Filled markers • represent training data, hollow markers ◦ represent test data. The dashed line shows the 95% confidence 

ellipse for f . 
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Fig. A14. Domain-wise Mahalanobis distance for KPCA. Filled markers • represent training data, hollow markers ◦ represent test data. The solid vertical 

line separates the damage data (C2), the dashed line shows the critical value for damage detection. 
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