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A B S T R A C T

Power curves capture the relationship between wind speed and output power for a specific wind
turbine. Accurate regression models of this function prove useful in monitoring, maintenance,
design, and planning. In practice, however, the measurements do not always correspond to
the ideal curve: power curtailments will appear as (additional) functional components. Such
multivalued relationships cannot be modelled by conventional regression, and the associated
data are usually removed during pre-processing. The current work suggests an alternative
method to infer multivalued relationships in curtailed power data. Using a population-based
approach, an overlapping mixture of probabilistic regression models is applied to signals
recorded from turbines within an operational wind farm. The model is shown to provide an
accurate representation of practical power data across the population.

. Introduction

Given an increased demand for renewable energy, accurate predictive models are essential to justify, manage, and monitor wind
urbine power generation. In particular, accurate predictions of the power output (under uncertainty) enable reliable forecasting of
he expected income for a complete wind farm – as well as individual turbines – to support the expansion of wind-based energy [1].
obust models of the power output have potential applications in performance monitoring and operator control, to ensure optimal
se in situ [2,3].
Power curves capture the relationship between wind speed and turbine output power [2] – the associated function can be used as

key indicator of performance [4]. A regression can be inferred to approximate the relationship given operational measurements
training data) – typically recorded using Supervisor Control and Sensory Data Acquisition (SCADA) systems [3]. An example of
CADA data is presented in Fig. 1; a regression of these data should generalise to future measurements given optimal operation of
he wind turbine.

Various techniques have been proposed to model training data that correspond to ideal operation [5–7]. In practice, however,
nly a subset of measurements will typically represent this relationship. In particular, power curtailments will appear as additional
unctional components; these usually correspond to the output power being controlled (or limited) by the operator. Reasons to limit
ower include: requirements of the electrical grid [8,9], the mitigation of loading/wake effects [10], and restrictions enforced by
lanning regulations.
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Fig. 1. Data that represent an ideal power curve. Measurements from three turbines over a period of three weeks.

Fig. 2. Data including power curtailments — corresponding to (i) the ideal power curve (ii) ≈50%-limited output, and (iii) zero-limited output. Measurements
from seven turbines over nine weeks.

An example of operational data including curtailments is shown in Fig. 2. The emergent space is multivalued, differing
significantly from the archetypal curve in Fig. 1 (additionally, it cannot be modelled by conventional regression). Typically,
the curtailment data are removed during pre-processing via engineering judgement [2], alongside filtering [11,12] and outlier
analysis [13,14] (see Section 2.1 for details).

Disregarding curtailment data is logical when modelling the ideal curve, corresponding to optimal operation [4]; despite this
fact, curtailed observations are expected in practice. Therefore, a representation of in situ measurements should model these data,
rather than filtering them out, particularly in monitoring or forecasting applications (outlined in Section 2.1).

The current work suggests an overlapping mixture of probabilistic regression models [15] (i.e. Gaussian processes [16]) to
infer multivalued power curves — such as those in Fig. 2. The statistical method can represent operational power data, including
curtailments, while negating requirements for user annotation of the observed data — i.e. categorisation of curtailments is
unsupervised. As a result, the model can represent observations that might be recorded from in-situ turbines in operation (rather
than the ideal case only), without the need for extensive outlier analysis, filtering, or pre-processing.

2. Related work

This work relates to existing literature (e.g. [2,3,14]) concerning performance monitoring and prediction via wind turbine power
curves. As aforementioned, numerous data-based models have been investigated, many of which have been summarised in review
papers [5–7]. A brief summary is provided.
2



Mechanical Systems and Signal Processing 169 (2022) 108530L.A. Bull et al.
Parametric methods fit parametrised functions to power curve data; some examples include polynomials and sigmoid
(tanh/logistic) functions [1,7,13]. Parametric models are desirable – sigmoid-type functions in particular – as properties that
appear inherent to power curves can be included; for example: the cut-in/cut-out wind speeds, bounded power above and below
these values, as well as near-linear behaviour within the bounds. Unfortunately, over-simplified functions can prove restrictive
when approximating the wind-power relationship, while overly complex models (e.g. high-order polynomials) are susceptible to
overtraining, and require validation procedures to ensure good generalisation to new data [4].

Alternative methods consider the data alone, and, in general, do not incorporate prior engineering knowledge. Some examples
include multilayer perceptions [11], random forests [17], and support vector machines [18]. While these tools have proved effective
in various machine learning tasks, many require stringent validation procedures, as the flexibility of the algorithms can easily lead
to over-parametrised models in wind turbine applications — as discussed in [4].

To combat the issues of overtraining, one option considers Gaussian Process (GP) regression [2,4,14,16]. GPs relieve the need
for validation as they are naturally self-regularising through the Bayesian Occam’s razor [19]; that is, training/optimisation will
find the minimally-complex model given the observations in the training set. While GPs are typically referred to as nonparametric,
a parametrised mean function (e.g. a sigmoid function) can be defined in the prior of the model. In general terms, the Bayesian
formulation allows for the natural inclusion of engineering knowledge of the expected functions, without the need to specify the
function directly [16]. As a result, GP regression can be viewed as a middle ground between purely data-based methods, and those
that are based on engineering knowledge.

2.1. Power-curtailments

There is an established literature concerning power curtailments in wind energy; for example, [8–10,20,21]. Generally, the
literature considers physics-based simulation techniques for prediction, or control procedures to enforce curtailment — as opposed
to data-driven models of wind-power measurements. For example, Hur and Leithead [9] present a wind farm controller to adjust
the power generated by turbines while considering the requirements of the grid (for a simulated wind farm). It is shown that, by
considering the entire wind farm in a control system, the output-power can be curtailed more effectively, such that turbines with high
wind-speeds compensate for those with lower wind-speeds. Bontekoning et al. [10] present an algorithm to determine the available
power of a wind farm during curtailment, when considering the reduced wake-effect. This phenomenon occurs when a turbine is
curtailed, leading to a reduced wake for downstream turbines; in turn, this leads to an apparent increase in the available power.
A physics-based model is used to adjust calculations of the available power during curtailment interactions. A number of papers
(e.g. Fan et al. [20], Luo et al. [21]) have analysed the history of power-curtailments for wind energy in China, to establish potential
solutions and improve the utilisation of the available resources. A range of technical, planning, and policy-making strategies are
proposed, highlighting the importance of understanding the expected curtailments when planning wind farm projects.

For data-driven power curve models, the curtailment data are typically considered as outliers, and removed during pre-processing;
this is because the typical concern is to characterise ideal operation. While the removal of these data makes a regression model
simpler, the outlier analysis is non-trivial; for example, Manobel et al. [11] flag and remove outliers using a threshold based on
a Gaussian Process regression, while Marvuglia and Messineo [12] de-noise the data using kernel principal component analysis.
Alternatively, Marc̆iukaitis et al. [13] use the quartile/interquartile range over windowed inputs to detect and remove outliers,
while Papatheou et al. [14] use labels for weekly subsets of data, provided by an expert, to remove measurements that do not
correspond to ideal operation.

2.2. Why model power-curtailments?

While it is logical to remove curtailment data when modelling an ideal wind-power relationship, it is desirable to consider these
‘outliers’ in critical applications — namely, monitoring, and forecasting. In data-driven monitoring [22], the model should approximate
all the variations of the permitted normal condition to inform reliable novelty detection. If the model represents ideal operation only,
measurements corresponding to acceptable curtailments (via control interactions) will be flagged as abnormal. Such a monitoring
regime would lead to a large number of false positives; a recognised issue in the turbine monitoring literature [3]. On the other
hand, accurate curtailment modelling should prove useful within reliable forecasting frameworks. That is, if a model considers all of
the expected measurements in-situ, it should be more informative than a model of ideal-operation only; i.e. power predictions prove
more conservative if curtailment data are considered. It should be noted, however, that the proposed model can only approximate
curtailments that have been previously observed.

Finally, if curtailment data are modelled rather than removed, they can be naturally separated using the model itself, instead of
a separate outlier analysis procedure. As discussed, the process of outlier removal proves far from trivial [11–14].

3. Contribution

A novel algorithm is proposed to model curtailments in wind turbine power curves. The method offers an alternative to the
conventional approach, which filters out the associated data. The algorithm expands on previous work concerning Gaussian processes
(GP) [2,4,14] by inferring an overlapping mixture-model of GP components — introduced by Lázaro-Gredilla et al. [15]. An
alternative (parametrised) mean function is suggested (for the GPs) that is scalable, and therefore suited to represent the expected
functions for curtailed data. This choice of mean function allows for the inclusion of prior engineering knowledge and leads
to interpretable hyperparameters. For each component (i.e. power curve) in the mixture of regression models, input-dependent
(heteroscedastic) noise is approximated (according to Kersting et al. [23]), an important consideration for probabilistic models of
wind turbine power data [4].
3
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3.1. Layout

Section 4 introduces the SCADA dataset and the issues associated with modelling operational (curtailed) measurements. Section 5
ummarises conventional Gaussian process regression for power curve modelling and introduces a novel parametrised mean function,
s well as methods to approximate input-dependent noise for curtailment data. Section 6 describes the Overlapping Mixture of
aussian Processes (OMGP) for power curve modelling, combined with ideas from Section 5. Section 7 applies the model to in

situ operational SCADA data, and proposes methods for population-based monitoring with the OMGP. Section 8 offers concluding
remarks.

4. Operational wind farm data: Population-based monitoring

This work considers a SCADA dataset, recorded from an operational wind farm owned by Vattenfall, originally presented in [2].
For confidentiality reasons, information regarding the specific type, location, and number of turbines cannot be disclosed. The data
were recorded from a farm containing the same model of turbine, over a period of 125 weeks [2,14]. Observations consist of the
mean power produced and measured wind speed over ten minute intervals. Sub-samples of this dataset are shown in Figs. 1 and 2.

Primarily, the suggested method considers a population-based approach to performance monitoring — associated with population-
ased structural health monitoring (PBSHM) [24–26]. That is, data from a population (the wind farm) are considered to infer a model
the power curve) that is representative of the group — this general model is referred to as the form in PBSHM [24]. To reiterate:
obust and accurate models of in situ population data are required to monitor the wind farm.

.1. Dataset details

For the SCADA data analysed in this work, the observations are unlabelled; i.e. records of the operational, environmental, or
amage condition are not available. Considering Fig. 2, this fact implies that there is no ground truth to indicate which underlying
unction generated each sample: (i) normal operation, (ii) ≈50% curtailment, (iii) or zero-power.1 As such, when modelling the
urtailments, labels to associate data with wind-power relationships (i–iii) are unobserved and must be represented as latent
ariables. It is important to note: if labels were available (in a control log, for example) they should be observed variables in the
odel. In the absence of labelling for functions (i-iii), the model must allocate observations in an unsupervised manner, which proves

non-trivial (consider outlier analysis procedures from previous work [11–14]).
To clarify, weekly subsets of data are presented in Fig. 3; notice that each set can be associated with more than one operational

condition (i-iii). While separate trends are visually clear, manually labelling each point with the ground-truth is infeasible. For
example, it is clear that data represent normal (i) and 50% curtailment (ii) in the left of Fig. 3; however, it becomes difficult
to assign measurements to functions as they overlap. Likewise, while certain data clearly correspond to zero-power (iii) in the right
of Fig. 3, it is unclear if the remaining data correspond to 50% curtailment (ii) or normal operation (i).

Conveniently, the labels can be modelled as a latent random variable. In turn, a predictive distribution can associate ‘soft-labels’
with the data, such that a (non-zero) likelihood associates measurements with each of the underlying functions (i-iii).

4.2. Data selection

While this work aims to represent more realistic measurements from an operational wind farm, it should be clarified that
preprocessing steps are still required. The study here primarily considers data from a subset of seven turbines over a period of
nine weeks (as well as four alternative turbines over seven weeks, for validation). Very sparse outliers are removed via a standard
K-nearest-neighbour approach [27]. The subsets of data were selected as they contain three trends of data (i-iii). It is acknowledged,
however, that alternative curtailments can occur, relating to different levels of limited power. Some examples of alternative functions
from different turbines are demonstrated in Section 7.1.

5. Gaussian processes to model curtailed power curves

Before introducing the overlapping mixture model (as well as heteroscedastic updates) it is useful to summarise conventional
GP regression. In this application, wind speed measurements correspond to the inputs 𝑥𝑖, while power measurements correspond
to the outputs 𝑦𝑖. Given a set of 𝑁 training data,  =

{

𝑥𝑖, 𝑦𝑖
}𝑁
𝑖=1 = {𝐱, 𝐲}, the predictive distribution of the power output 𝑦∗ for a

new measurement of wind speed 𝑥∗ is inferred. Following a probabilistic approach, the power curve is modelled by some noiseless
latent function 𝑓 (𝑥𝑖), plus an independent noise term 𝜖𝑖,

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖 (1)

Rather than inferring the parameters of a function 𝑓 (as with conventional parametric regression) a GP prior is placed over the
functions directly. A Gaussian prior is also assumed for the noise term 𝜖𝑖 (the other latent variable). Using a Bayesian framework,

1 While the zero-power trend is not a typical curtailment, is it considered here as a function whose data are typically filtered out before modelling. Additionally,
4

he data are interesting to consider, as they differ functionally from other trends in the measurements.
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Fig. 3. Examples of weekly data subsets, measured from individual turbines.

a posterior distribution over the expected functions can be obtained, once training data  have been observed. The GP prior is
defined by its mean 𝑚(𝑥𝑖) and covariance function 𝑘(𝑥𝑖, 𝑥𝑗 ); while the Gaussian prior is parametrised by 𝜎,

𝑓 (𝑥𝑖) ∼ 𝐺𝑃
(

𝑚
(

𝑥𝑖
)

, 𝑘
(

𝑥𝑖, 𝑥𝑗
))

(2)

𝜖𝑖 ∼  (0, 𝜎2) (3)

Over a finite and arbitrary set of inputs 𝐱 =
{

𝑥1,… , 𝑥𝑁
}

, the GP is a (joint) multivariate Gaussian [27],

𝑝(𝐟 ∣ 𝐱) =  (𝐦,𝐊𝐱𝐱) (4)

where 𝐦 = {𝑚(𝑥𝑖),… , 𝑚(𝑥𝑁 )} and 𝐟 = {𝑓 (𝑥𝑖),… , 𝑓 (𝑥𝑁 )}, while 𝐊𝐱𝐱 is the covariance matrix, such that 𝐊𝐱𝐱[𝑖, 𝑗] = 𝑘(𝑥𝑖, 𝑥𝑗 ) ∀𝑖, 𝑗 ∈
{1,… , 𝑁}. Note: square brackets are used to index matrices and vectors when subscripts become cluttered.

Importantly, via the mean 𝑚(𝑥𝑖) and covariance 𝑘(𝑥𝑖, 𝑥𝑗 ), the GP prior can be used to encode knowledge of the expected functions
given engineering judgement (before data are observed). The covariance function determines the correlation between outputs 𝑦𝑖 and
𝑦𝑗 – it determines properties such as the process variance, and smoothness [15]. A popular (and relatively interpretable) choice of
𝑘(⋅) is the squared-exponential function (which is used here),

𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝜎2𝑓 exp
{

− 1
2𝑙2

(𝑥𝑖 − 𝑥𝑗 )2
}

(5)

where 𝜎𝑓 is the process variance, defining variance of the expected functions about the mean, and 𝑙 is the length scale, which
determines the rate at which the correlation between outputs decays across the input space (smoothness).

Since the GP is flexible enough to model arbitrary trends [27], a zero-mean function is typically assumed [15,16] such that
𝑚(𝑥𝑖) = 0; this is usually (somewhat) justified by subtracting the sample mean and standard deviation from the outputs 𝐲. However,
if knowledge of the expected functions can be encoded via an explicit/parametrised mean (even approximately) this should be
included [24]2. With an explicit mean, the resulting algorithm can be considered semi-parametric [27], such that the GP models the
residuals between the data and some parametrised function 𝑚(𝑥𝑖) (i.e. the prior mean).

5.1. Prior knowledge of the expected functions

As aforementioned, sigmoid functions can be used to approximate the expected power curve relationship: they exhibit a near-
linear relationship within bounds (cut-in cut-out wind speeds) and horizontal asymptotes (re. min/max power) for high and low
inputs (𝑥𝑖 → ±∞). Sigmoids have been applied to power curves in the past — for parametric regression, e.g. [1,7,13], as well as
within GPs [4]. A scaled version of the soft-clip (SC) function, presented by Klimek and Perelstein [28], is suggested as an alternative
for this application,

𝑚(𝑥𝑖 ; 𝛽,𝜶) =
𝛼1
𝛽

log
{

1 + 𝑒𝛽𝑣

1 + 𝑒𝛽(𝑣−1)

}

(6)

𝑣 ≜ 𝛼2𝑥𝑖 + 𝛼3

2 It is acknowledged, however, that a poor choice of prior can lead to inferior predications.
5
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Fig. 4. Effects of the hyperparameters on the mean function of the prior 𝑚(𝑥𝑖; 𝛽,𝜶).

𝜶 ≜
{

𝛼1, 𝛼2, 𝛼2
}

(7)

Relating to power curves, the hyperparameters {𝛽,𝜶} are interpretable. 𝛼1 determines the value of the horizontal (non-zero)
asymptote, which corresponds to the maximum (or limited) power. 𝛽 controls the rate at which the near-linear section tends to the
asymptotic values (around the cut-in/cut-out wind speed). Finally, 𝛼2 scales and 𝛼3 translates the function with respect to the 𝑥𝑖 axis.

Fig. 4 illustrates the effects of {𝛽,𝜶}. Importantly, control of the convergence rate via 𝛽 is particularly useful for curtailed data.
Consider the ≈50% limited trend in Fig. 2: a sigmoid approximation would need to be scaled, such that 𝛼1 ≈ 0.5, while 𝛽 must also
increase to define sharper asymptotic behaviour. It is acknowledged that the zero-power trend (visible in Fig. 2) does not resemble
a soft-clip function. In fact, a linear regression would approximate these data – a suitable component is introduced in Section 6.

5.2. Prediction and optimisation

The collected hyperparameters of the model (associated with the mean and kernel functions) are 𝜽 =
{

𝛽,𝜶, 𝜎𝑓 , 𝑙, 𝜎
}

. Keeping
these values fixed, the joint distribution between the training data  = {𝐱, 𝐲} =

{

𝑥𝑖, 𝑦𝑖
}𝑁
𝑖=1 and some previously unseen observations

{

𝐱∗, 𝐲∗
}

=
{

𝐱∗[𝑖], 𝐲∗[𝑖]
}𝑀
𝑖=1 (with additive noise) is multivariate Gaussian,

[

𝐲
𝐲∗

]

∼ 
([

𝐦
𝐦∗

]

,
[

𝐊𝐱𝐱 + 𝐑 𝐊𝐱𝐱∗
𝐊𝐱∗𝐱 𝐊𝐱∗𝐱∗ + 𝐑∗

])

. (8)

𝐑 ≜ 𝜎2𝐈𝑁
𝐑∗ ≜ 𝜎2𝐈𝑀 (9)
6
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Fig. 5. Homoscedastic GP regression of the ideal power curve. The model in the data space (top) and the zero-mean transformed space (bottom). The black
line shows the prior mean 𝐦, the red line shows the predictive mean E[𝐲∗], and the shaded region shows three-sigma of the predictive variance V[𝐲∗].

where {𝐑,𝐑∗} define the noise kernels, such that 𝐈𝑁 denotes an 𝑁 ×𝑁 identity matrix, and 𝐈𝑀 denotes an 𝑀 ×𝑀 identity matrix.
Continuing similar notation, 𝐦∗ =

{

𝑚
(

𝐱∗[𝑖]
)}𝑀

𝑖=1 denotes the mean vector for the new observations.
According to the standard identity for conditioning a joint Gaussian distribution [16,27], the predictive equations can be defined,

𝑝
(

𝐲∗ ∣ 𝐱∗,
)

= 
(

𝝁∗,𝜮∗
)

(10)

𝝁∗ ≜ 𝐦∗ +𝐊𝐱∗𝐱
(

𝐊𝐱𝐱 + 𝐑
)−1 (𝐲 −𝐦)

𝜮∗ ≜ 𝐊𝐱∗𝐱∗ −𝐊𝐱∗𝐱
(

𝐊𝐱𝐱 + 𝐑
)−1 𝐊𝐱𝐱∗ + 𝐑∗

i.e. the mean of the posterior predictive function is E
[

𝐲∗
]

= 𝝁∗, and the variance about that mean is V
[

𝐲∗
]

= diag(𝜮∗) (ignoring
cross-terms).

Until this point, the hyperparameters 𝜽 =
{

𝛽,𝜶, 𝜎𝑓 , 𝑙, 𝜎
}

have been fixed. In practice, these are (typically) optimised through
empirical Bayes [27], i.e. a type-II maximum likelihood [16], see Appendix A for details.

5.3. Heteroscedastic updates: Estimating input-dependent noise

Currently, the noise term 𝜖𝑖 in Eq. (1) has been governed by a single hyperparameter 𝜎. When squared, 𝜎 defines the noise
variance; in turn, this defines the noise kernel 𝐑 (Eq. (9)). This setup enforces the assumption that the noise variance is constant
across the input domain, leading to a homoscedastic GP — that is, the noise variance does not change over 𝑥𝑖. To demonstrate, Fig. 5
depicts the homoscedastic GP learnt from the ideal data (in Fig. 1). The model behaves as expected: the mean function of the prior
approximates the relationship as far as possible, while the GP models the residual between this prior and the data. To highlight this
effect, the residual modelled by the GP can be visualised in the zero-mean transformed space, that is [𝑦𝑖 − 𝑚(𝑥𝑖)], Fig. 5.

While the expected function E[𝐲∗] is representative of the general trend, the noise variance is poorly approximated when 𝜎 is
constant. This is particularly apparent in the transformed space

(

𝑦𝑖 − 𝑚
(

𝑥𝑖
))

, where the noise (represented by the shaded area)
is significantly overestimated at high/low wind speeds (towards the asymptotes) and underestimated in the near-linear (central)
regions. In consequence, as proposed in [4], it is necessary to model power curve data with input-dependent noise, via heteroscedastic
regression [29]. Specifically, the variance of the noise terms is now some function of the inputs 𝑥𝑖, such that,

𝜖𝑖 ∼  (0, 𝜎2𝑖 ) (11)

𝜎2𝑖 = 𝑟(𝑥𝑖) (12)

The GP equations remain the same, other than (9), which defined a homoscedastic noise kernel. For a heteroscedastic process, the
diagonal of the noise kernel is now defined by 𝑟(𝑥𝑖), rather than a constant, such that,

𝐑 ≜ diag
({

𝑟(𝑥1),… , 𝑟(𝑥𝑁 )
})

𝐑∗ ≜ diag
({

𝑟(𝑥∗1),… , 𝑟(𝑥∗𝑀 )
})

(13)

where the off-diagonal elements are zero, 𝐑 is an 𝑁 ×𝑁 matrix, and 𝐑 is an 𝑀 ×𝑀 matrix.
7
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5

Rather than specifying a functional form for the noise variance, an additional independent GP is used to infer the function 𝑟(𝑥𝑖).
s 𝜎 must be strictly positive, the GP models the log-noise levels, denoted 𝑔(𝑥𝑖), such that,

log(𝑟(𝑥𝑖)) = 𝑔(𝑥𝑖) ∼ 𝐺𝑃 (𝜇𝑔 , 𝑘𝑔(𝑥𝑖, 𝑥𝑗 )) (14)

.e. a GP prior with constant mean 𝜇𝑔 and a squared-exponential kernel. The kernel has the same form as Eq. (5), with a distinct
ength scale and process variance, such that the hyperparameters of the noise-process are 𝜻 = {𝜇𝑔 , 𝜎𝑔 , 𝑙𝑔}.

The training points for the 𝑔-process can have arbitrary locations; in this case, it is convenient that they coincide with the
-process, such that 𝐠 = {𝑔(𝑥𝑖),… , 𝑔(𝑥𝑁 )}. Since the noise process has been introduced as additional (conditionally-independent)

atent variables 𝐠, the predictive distribution for 𝐲∗ (previously Eq. (10)) is extended to [23],

𝑝
(

𝐲∗ ∣ 𝐱∗,
)

= ∬ 𝑝
(

𝐲∗ ∣ 𝐱∗, 𝐠, 𝐠∗,
)

𝑝(𝐠, 𝐠∗ ∣ 𝐱∗,)𝑑𝐠𝑑𝐠∗ (15)

ixing {𝐠, 𝐠∗}, the predictive distribution 𝑝
(

𝐲∗ ∣ 𝐱∗, 𝐠, 𝐠∗,
)

is the same as before — with Eq. (13) defining the noise kernel 𝐑.
Unfortunately, the term 𝑝(𝐠, 𝐠∗ ∣ 𝐱∗,) is problematic, as the integral is intractable. Various approximations of the integral can

e implemented; including Monte-Carlo approximations, as well as variational inference [4,30,31]. A simple (and computationally-
nexpensive) point-wise approximation of 𝐠 is utilised here. This approach is convenient, since input-dependent noise can be
mplemented as an update step following inference of the OMGP (outlined in Section 6). In this case, the approximation was found
o be representative of input-dependent noise for the power curve data.

Specifically, according to Kersting et al. [23], the most likely estimate of the target noise levels is assumed for the 𝑔-process, such
hat,

𝑝
(

𝐲∗ ∣ 𝐱∗,
)

≈ 𝑝
(

𝐲∗ ∣ 𝐱∗, 𝐠̂, 𝐠̂∗,
)

(16)

{𝐠̂, 𝐠̂∗} ≜ argmax{𝐠̂,𝐠̂∗}
{

𝑝(𝐠, 𝐠∗ ∣ 𝐱∗,)
}

(17)

i.e. most (all) of the density of 𝑝(𝐠, 𝐠∗ ∣ 𝐱∗,) is assumed to be concentrated around the mode {𝐠̂, 𝐠̂∗} [23].

.3.1. Optimisation of the noise process
To obtain point-wise estimates of 𝐠, a homoscedastic process is initially learnt by type-II ML – denoted 𝐺1 – with hyperparameters

𝜽. (𝐑 is a constant noise kernel, as in Eq. (9).) Given 𝐺1, an empirical estimate of the most likely noise variance can be calculated for
each training observation

{

𝑥𝑖, 𝑦𝑖
}

∈ , by considering a sample 𝑦̃(𝑗)𝑖 from the predictive distribution of 𝐺1. If 𝑦𝑖 and 𝑦̃(𝑗)𝑖 are viewed

as two independent observations from the same underlying distribution, their arithmetic mean 0.5
(

𝑦𝑖 − 𝑦̃(𝑗)𝑖

)2
is shown to be a valid

approximation of the noise variance at 𝑥𝑖 [23]. This can be improved by taking an expectation w.r.t. the predictive distribution,
such that [23],

log
{

V
[

𝑦𝑖, 𝐺1(𝑥𝑖,)
]}

≈ 𝑔′𝑖 (18)

= log

{

1
𝑠

𝑠
∑

𝑗=1
0.5

(

𝑦𝑖 − 𝑦̃(𝑗)𝑖

)2
}

(19)

here, 𝑠 is the sample size from the predictive distribution of 𝐺1. A suitably large value of 𝑠 should lead to reasonable estimates: Ker-
sting et al. [23] recommend 𝑠 ≥ 100, thus, in this case, 𝑠 = 100. Having calculated 𝐠′ = {𝑔′1,… , 𝑔′𝑁}, the noise process can be learnt
– denoted 𝐺2 – by type-II ML (given

{

𝐠′, 𝐱
}

) with distinct hyperparameters 𝜻 . Then, conditioning a joint multivariate Gaussian (as
before) the distribution 𝑝(𝐠∗ ∣ 𝐱∗, 𝐱, 𝐠′) can be used to predict the (logarithmic) noise variance across the input space; in turn, defining
𝑟(𝑥𝑖).

The heteroscedastic GP – denoted 𝐺3 – combines 𝐺1 and 𝐺2; i.e. 𝐺2 models the input-dependent noise kernel according to Eq. (13)
for the 𝐺1 process. At this point, 𝐺1 is set to 𝐺3 (𝐺1 ← 𝐺3) and each step is repeated until convergence in the marginal likelihood
(of the heteroscedastic process 𝐺3). The optimisation procedure is summarised in Appendix B. Learning 𝐠 in this way effectively
minimises the average distance between the target output 𝑦𝑖 and the predictive distribution of the (heteroscedastic) process 𝐺3 at
the training inputs [23].

5.4. Heteroscedastic regression of the ideal power curve

The optimised heteroscedastic process for the ideal data is shown in Fig. 6. Unlike the homoscedastic example (Fig. 5) the model
is representative of input-dependent noise; to highlight this, the lower sub-plots illustrate the changing variance (shaded regions)
and associated noise-levels over the inputs (blue line). As expected, a lower variance is associated with the tails of the sigmoid and
a larger variance at the centre. To quantify improvements, the joint-log-likelihood of the training and test data under the model
can be monitored — this increases from 2.31 × 103 to 3.31 × 103, highlighting that input-dependent noise better approximates the
variance in the data.

The results so far, however, have shown a regression of the ideal observations only, similar to [4]. The OMGP is now introduced
8

to model curtailed data, such as those in Figs. 2 and 3.
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Fig. 6. Heteroscedastic GP regression of the ideal power curve. The model in the original space (top), the zero-mean transformed space (middle), and the
expectation of the noise function 𝜎𝑖 = E

[

√

𝑟(𝑥𝑖)
]

(bottom). The black line shows the prior mean 𝐦, the red line shows the predictive mean E[𝐲∗] = 𝝁∗, and the
shaded region shows three-sigma of the predictive variance V[𝐲∗] = diag(𝜮∗).

6. An overlapping mixture of Gaussian processes

The overlapping mixture of Gaussian processes (OMGP) model [15,32] is introduced to infer regression functions given curtailed
power curve data. Here, the notation follows that of Lázaro-Gredilla et al. [15]. Rather than a single GP, the OMGP assumes multiple
latent functions to describe the data, such that,

𝑦(𝑘)𝑖 =
{

𝑓 (𝑘)(𝑥𝑖) + 𝜖𝑖
}𝐾
𝑘=1 (20)

i.e. each observation is found by evaluating one of 𝐾 latent functions, with additive noise: for now, each process is homoscedastic.
As discussed, labels to assign observations to functions are unknown. In consequence, a latent variable is introduced to the model,
𝐙 – this is a binary indicator matrix, such that 𝐙[𝑖, 𝑘] ≠ 0 indicates that observation 𝑖 was generated by function 𝑘. There is only
one non-zero entry per row in 𝐙 (each observation is found by evaluating one function only).

The likelihood of the OMGP is, therefore [15],

𝑝
(

𝐲 ∣
{

𝐟 (𝑘)
}𝐾
𝑘=1 ,𝐙, 𝐱

)

=
𝑁,𝐾
∏

𝑖,𝑘=1
𝑝
(

𝑦𝑖 ∣ 𝑓 (𝑘)(𝑥𝑖)
)𝐙[𝑖,𝑘] (21)

As with the conventional GP, prior distributions are placed over the latent functions and variables,

𝑃 (𝐙) =
𝑁,𝐾
∏

𝑖,𝑘=1
𝜫[𝑖, 𝑘]𝐙[𝑖,𝑘] (22)

𝑓 (𝑘)(𝑥𝑖) ∼ 𝐺𝑃
(

𝑚(𝑘) (𝑥𝑖
)

, 𝑘(𝑘)
(

𝑥𝑖, 𝑥𝑗
))

(23)

𝜖(𝑘)𝑖 ∼  (0, 𝜎2) (24)

where Eq. (22) is the prior over the indicator matrix, such that 𝜫[𝑖, ∶] is a histogram over the 𝐾 components for the 𝑖th observation,
and ∑𝐾 𝜫[𝑖, 𝑘] = 1. (Note, colon notation is used to index all columns or rows in a matrix.) The terms in Eq. (23) are independent
9
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GP priors over each latent function 𝑓 (𝑘) with distinct mean/kernel functions
(

𝑚(𝑘) (𝑥𝑖
)

, 𝑘(𝑘)
(

𝑥𝑖, 𝑥𝑗
))

. To reduce the number of latent
ariables, the prior over the noise variances is defined by a shared hyperparameter 𝜎 (this is modified later, in the heteroscedastic
pdates).

The collected hyperparameters for the model are
{

{

𝜽𝑘
}𝐾
𝑘=1 ,𝜫

}

. The notation 𝜽𝑘 denotes a distinct set of mean/kernel function
yperparameters for the 𝑘th component (including the noise kernel). Referring back to the curtailed data in Fig. 2, it is now possible
o encode prior engineering knowledge of the expected functions through the covariance, mean, and hyperparameters. Here, it is
rgued that the following are known, given prior knowledge of wind turbine power curves:

• given the training data (and possibly prior knowledge of the operational conditions) it should be clear that three latent
functions will be representative of the data, such that3 𝐾 = 3;

• for the zero-power relationship, a linear regression (with a constant kernel) should be representative;
• for the remaining functions (ideal and curtailed data) the soft-clip Eq. (6) appropriately describes the expected relationships.

In this setting, while 𝐾 = 3, the prior includes two independent GPs with a soft-clip mean (Eq. (6)) and squared-exponential
ernel (Eq. (5)) function. These priors correspond to the ideal and curtailed curves. For the final component, a constant kernel is
elected 𝑘(3)(𝑥𝑖, 𝑥𝑗 ) = 𝑐; this reduces the latent function to a (zero-gradient) linear regression, to approximate the zero-power data.
o summarise, the hyperparameters (of the prior) of the model are: 𝜽𝑘 = {𝛽𝑘,𝜶𝑘, 𝜎

(𝑘)
𝑓 , 𝑙𝑘, 𝜎}2𝑘=1 and 𝜽3 = {𝑐, 𝜎}.

.1. A note on model assumptions

It is important to clarify the modelling assumptions. While the OGMP infers labels 𝐙, to associate measurements to functions in
n unsupervised manner, the number of functional components (𝐾) and their priors must be defined in advance. (This concept is
omewhat analogous to unsupervised learning with Gaussian Mixture models [27].) As such, while an engineer is not required to
abel the data, they are required to predefine an appropriate number of functions. Here, it is assumed that this can be determined
y inspecting the static training-set (i.e. Fig. 2) in an offline sense. In certain scenarios, however, predefining 𝐾 and the prior
istributions is less trivial; incremental/online learning, for example. There are several options in this setting. One can select an
ppropriate number of components via cross-validation, considering quantities such as the Bayesian Information Criterion (BIC) or
ayes factors [27] – an example of cross-validation is provided in Section 7.1 and Appendix D. Alternatively, 𝐾 could be considered
s an additional latent variable, and its estimation could be included in the inference. Unsurprisingly inferring 𝐾 in this way is more
nvolved, as presented by Ross and Dy [33].

It is reiterated that the training-data consider a subset of possible curtailments (described in Section 4.2). This consideration
hould not be an issue in practice, as the model is flexible in the power curves it can represent. To demonstrate, the OMGP is learnt
or another set of curtailments, measured from four alternative turbines in the wind farm — the results are presented in Section 7.
t should be acknowledged, of course, that inference will slow down as more data (or components) are included – a typical caveat
hen learning from data. In the context of Gaussian processes, there are a number of options; for example, sparse approximations

ould be explored [34].

.2. Variational approximation

Due to the latent variables
{

𝐟 (𝑘)
}

and 𝐙, computation of the posterior 𝑝
(

{

𝐟 (𝑘)
}𝐾
𝑘=1 ,𝐙 ∣ 𝐱, 𝐲

)

is now intractable; thus, variational
nference (VI) [31] is implemented. Specifically, VI involves specifying an approximate density family 𝑞(𝐚) ∈  over the target
onditional 𝑝(𝐚 ∣ 𝐛). The best candidate 𝑞(𝐚) can be viewed as 𝑞(𝐚) ∈  that is closest to the (unknown) target 𝑝(𝐚 ∣ 𝐛) in terms of the
L-divergence,

𝑞(𝐚) = argmin𝑞(𝐚)∈{𝐾𝐿 (𝑞(𝐚) ∣∣ 𝑝(𝐚 ∣ 𝐛))} (25)

nce found, 𝑞(𝐚) is the best approximation of 𝑝(𝐚 ∣ 𝐛) within the family  [31]. (In this case, 𝐚 ≜
{{

𝐟 (𝑘)
}

,𝐙
}

and 𝐛 ≜ {𝐲}.) The KL
ivergence for Eq. (25) is defined,

𝐾𝐿 (𝑞(𝐚) ∣∣ 𝑝(𝐚 ∣ 𝐛)) = E𝑞(𝐚)[log 𝑞(𝐚)] − E𝑞(𝐚)[log 𝑝(𝐚 ∣ 𝐛)] (26)

= E𝑞(𝐚)[log 𝑞(𝐚)] − E𝑞(𝐚)[log 𝑝(𝐚,𝐛)] + log 𝑝(𝐛) (27)

Steps (26) to (27) uses log rules while expanding the conditional.) Eq. (27) reveals the dependence on 𝑝(𝐛), which is intractable,
nd why VI is needed in the first place [31]. Therefore, rather than the KL divergence (27), an alternative object is optimised that
s equivalent to the (negative) KL divergence up to the term log 𝑝(𝐛), which is a constant with respect to 𝑞(𝐳); that is,

𝑏(𝐚) = E𝑞(𝐚)[log 𝑝(𝐚,𝐛)] − E𝑞(𝐚)[log 𝑞(𝐚)] (28)

= ∫ 𝑞(𝐚) log 𝑝(𝐚,𝐛)
𝑞(𝐚)

d 𝐚 (29)

3 While it is assumed 𝐾 = 3, the point-wise classification of each datum remains unknown.
10
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This quantity is the referred to as the evidence lower bound (elbo). From (27), it can be seen that maximising this object will minimise
the KL divergence between 𝑞(𝐚) and 𝑝(𝐚 ∣ 𝐛).

Conveniently, Eq. (29) can be used to construct a lower bound on the marginal likelihood 𝑝(𝐛): i.e. rearranging Eq. (27) and
substituting in (28) leads to,

log 𝑝(𝐛) = 𝐾𝐿 (𝑞 (𝐚) ∥ 𝑝 (𝐚 ∣ 𝐛)) + 𝑏 (30)

Since 𝐾𝐿(⋅) ≥ 0 [35], it follows that the evidence is lower-bounded by the elbo, in other words log 𝑝(𝐛) ≥ 𝑏. This inequality is
useful, as 𝑏 can be used to monitor the marginal likelihood during inference/optimisation (as with the conventional GP, Eq. (A.3)).
Substituting notation 𝐚 ≜

{{

𝐟 (𝑘)
}

,𝐙
}

and 𝐛 ≜ {𝐲} in (29), leads to (32),

log 𝑝(𝐲 ∣ 𝐱) = log∬ 𝑝
({

𝐟 (𝑘)
}

,𝐙, 𝐲, 𝐱
)

𝑝
({

𝐟 (𝑘)
})

𝑝 (𝐙) d
{

𝐟 (𝑘)
}

d𝐙 (31)

≥ 𝑏 = ∬ 𝑞
({

𝐟 (𝑘)
}

,𝐙
)

log
𝑝
({

𝐟 (𝑘)
}

,𝐙, 𝐲, 𝐱
)

𝑞
({

𝐟 (𝑘)
}

,𝐙
) d

{

𝐟 (𝑘)
}

d𝐙

= ∬ 𝑞
({

𝐟 (𝑘)
}

,𝐙
)

log
𝑝
(

𝐲 ∣
{

𝐟 (𝑘)
}

,𝐙, 𝐱
)

𝑝(𝐙)
∏𝐾

𝑘=1 𝑝
(

𝐟 (𝑘) ∣ 𝐱
)

𝑞
({

𝐟 (𝑘)
}

,𝐙
) d

{

𝐟 (𝑘)
}

d𝐙 (32)

A family of variational distributions 𝑞 ∈  is now chosen to approximate 𝑝
({

𝐟 (𝑘)
}

,𝐙 ∣ 𝐱, 𝐲
)

such that a mean field assumption is
implemented: i.e. 𝑞 factorises, 𝑞

({

𝐟 (𝑘)
}

,𝐙
)

= 𝑞
({

𝐟 (𝑘)
})

𝑞 (𝐙). In consequence, due to conjugacy, it is possible to analytically update
each latent variable in turn (while keeping the others fixed) such that the bound 𝑏 is maximised (with respect to that variable).
Updates for each factor are iterated until convergence in the lower bound 𝑏.4

6.2.1. Mean-field updates
Firstly, assuming 𝑞

({

𝐟 (𝑘)
})

is known – and therefore the marginals for each component 𝑞
(

𝐟 (𝑘)
)

= 
(

𝝁(𝑘),𝜮(𝑘)) – it is possible to
analytically maximise 𝑏 with respect to 𝑞(𝐙), by setting the derivative of the bound to zero, and constraining 𝑞 to be a probability
density [15],

𝑞(𝐙) =
𝑁,𝐾
∏

𝑖=1,𝑘=1
𝜫̂[𝑖, 𝑘]𝐙[𝑖,𝑘], s.t. 𝜫̂[𝑖, 𝑘] ∝ 𝜫[𝑖, 𝑘] exp

(

𝑎𝑖𝑘
)

(33)

𝑎𝑖𝑘 ≜ − 1
2𝜎2

(

(

𝑦𝑖 − 𝝁(𝑘)
𝑖

)2
+𝜮(𝑘)[𝑖, 𝑖]

)

− 1
2
log

(

2𝜋𝜎2
)

here Eq. (33) implies the approximated distribution 𝑞(𝐙) is factorised for each sample [15].
Conversely, assuming 𝑞(𝐙) is known, 𝑏 can maximised with respect to each latent function 𝑞

({

𝐟 (𝑘)
})

,

𝑞
(

𝐟 (𝑘)
)

= 
(

𝐟 (𝑘) ∣ 𝝁(𝑘),𝜮(𝑘)) (34)

𝜮(𝑘) ≜
(

𝐊−1(𝑘)
𝐱𝐱 + 𝐁(𝑘)

)−1

𝝁(𝑘) ≜ 𝐦(𝑘) +𝜮(𝑘)𝐁(𝑘) (𝐲 −𝐦(𝑘))

where 𝐁(𝑘) is a 𝑁 ×𝑁 diagonal matrix (off-diagonals are zero) with elements,

𝐁(𝑘) = diag
({

𝜫̂[1, 𝑘]
𝜎2

, … , 𝜫̂[𝑁, 𝑘]
𝜎2

})

(35)

To find a candidate 𝑞 that is closest to the true posterior, 𝑞(𝐙) and 𝑞
({

𝐟 (𝑘)
})

are initialised from their priors, and they are iteratively
updated by alternating Eqs. (33) and (34). Both updates are optimal with respect to the distribution that they compute; therefore,
they are guaranteed to increase the (lower bound) on the log-marginal-likelihood [15], Eq. (32).

6.2.2. Monitoring convergence: An improved lower bound
As in [30], an improved bound is used to monitor convergence, introduced by King and Lawrence [36]. This object, denoted 𝑏𝑐 ,

also lower-bounds the marginal likelihood, while being an upper-bound on the standard variational bound 𝑏 (Eq. (32)). (That is,
if 𝑏 is subtracted from the improved bound, the result is a KL divergence — as 𝐾𝐿(⋅) ≥ 0, this implies that 𝑏𝑐 upper-bounds 𝑏.)
The bound can be defined when the term log ∫ 𝑝

({

𝐟 (𝑘)
}

,𝐙, 𝐲, 𝐱
)

𝑝 (𝐙) d𝐙 – in the true marginal likelihood, Eq. (31) – is replaced
with ∫ 𝑞(𝐙) log 𝑝

({

𝐟 (𝑘)
}

,𝐙,𝐲,𝐱
)

𝑝(𝐙)
𝑞(𝐙) d𝐙. Following substitution, it is possible to integrate out 𝑝

({

𝐟 (𝑘)
})

analytically. Alternatively, Lázaro-
redilla and Titsias [30] show that it is possible to obtain the corrected bound by optimally removing 𝑝

({

𝐟 (𝑘)
})

from the standard
ound. The (implementation friendly) expression for 𝑏𝑐 is as follows [30],

log 𝑝(𝐲 ∣ 𝐱) ≥ 𝑏𝑐

4 At this stage in the inference, the hyperparameters of the model
{

{

𝜽
}𝐾 ,𝜫

}

are fixed — they will be optimised later.
11

𝑘 𝑘=1



Mechanical Systems and Signal Processing 169 (2022) 108530L.A. Bull et al.
=
𝐾
∑

𝑘=1

(

−1
2
‖

‖

‖

𝐑(𝑘)⊤∖
(

𝐁(𝑘) 12
(

𝐲 −𝐦(𝑘))
)

‖

‖

‖

2
−

𝑁
∑

𝑖=1
log𝐑(𝑘)[𝑖, 𝑖]

)

…

− KL
(

𝑞 (𝐙) ‖‖
‖

𝑝 (𝐙)
)

− 1
2

𝑁,𝐾
∑

𝑖=1,𝑘=1
𝜫̂[𝑖, 𝑘] log

(

2𝜋𝜎
2
)

(36)

𝐑(𝑘) ≜ chol
(

𝐈 + 𝐁(𝑘) 12 𝐊(𝑘)
𝐱𝐱 𝐁(𝑘) 12

)

KL
(

𝑞 (𝐙) ‖‖
‖

𝑝 (𝐙)
)

≜
𝐾,𝑁
∑

𝑖=1,𝑘=1
𝜫̂[𝑖, 𝑘] log 𝜫[𝑖, 𝑘]

𝜫̂[𝑖, 𝑘]

where chol(⋅) is the Cholesky decomposition and the backslash operator 𝐀∖𝐁 solves the systems of linear equations 𝐀𝐜 = 𝐁 for 𝐜.
The improved, tighter bound is independent of 𝑝

({

𝐟 (𝑘)
})

– hence it can be referred to as the marginalised variational bound [30]. In
words, this implies that 𝑏 is the same as 𝑏𝑐 – for a given 𝑞(𝐙) – when an optimal choice for 𝑝

({

𝐟 (𝑘)
})

is made [15]. In consequence,
the bound is more stable over different hyperparameter values [36], and it is more efficient when optimising

{

{

𝜽𝑘
}𝐾
𝑘=1 ,𝜫

}

through
type-II ML (the optimisation scheme is outlined below).

6.2.3. Optimisation of hyperparameters
A variational inference and Expectation Maximisation (EM) scheme is implemented [31]. The strategy iteratively updates the

approximate (factorised) posterior and then optimises the hyperparameters of the model, while the (improved) lower bound 𝑏𝑐 on
the marginal likelihood is maximised. The EM steps are repeated until convergence:

1. E-step: mean field updates — iterate Eqs. (33) and (34) until convergence in 𝑏𝑐 (or 𝑏), hyperparameters are fixed.
2. M-step: optimise the lower bound 𝑏𝑐 w.r.t. all hyperparameters until convergence,

{

̂{

𝜽𝑘
}𝐾

𝑘=1, 𝜫̂
}

= argmax
{

{𝜽𝑘}𝐾𝑘=1 ,𝜫
}

{

𝑏𝑐

}

the distribution 𝑞(𝐙) is kept fixed.

Having initialised each component from the prior, steps 1 and 2 are iterated until convergence in 𝑏𝑐 (of the M-step).

6.2.4. Predictive equations
Having learnt the OMGP, it can be used to estimate the latent variables and functions. These predications are critical in the

context of performance monitoring: i.e. for a given measurement of wind speed 𝑥𝑖, the OMGP can predict the power output 𝑦𝑖, and
classify the trend (or curtailment) 𝑘 ∈ {1,… , 𝐾}. The posterior predictive likelihood given the unseen inputs 𝐱∗ is,

𝑝(𝐲∗ ∣ 𝐱∗,) ≈
𝐾
∑

𝑘=1
𝜫[∗, 𝑘]∫ 𝑝

(

𝐲∗ ∣ 𝐟 (𝑘), 𝐱∗,
)

𝑞
(

𝐟 (𝑘) ∣ 
)

d 𝐟 (𝑘) (37)

=
𝐾
∑

𝑘=1
𝜫[∗, 𝑘] 

(

𝐲∗ ∣ 𝝁(𝑘)
∗ ,𝜮(𝑘)

∗
)

(38)

𝝁(𝑘)
∗ ≜ 𝐦(𝑘)

∗ +𝐊(𝑘)
𝐱∗𝐱

(

𝐊(𝑘)
𝐱𝐱 + 𝐁(𝑘)−1

)−1
(

𝐲 −𝐦(𝑘))

𝜮(𝑘)
∗ ≜ 𝐊(𝑘)

𝐱∗𝐱∗ −𝐊(𝑘)
𝐱∗𝐱

(

𝐊(𝑘)
𝐱𝐱 + 𝐁(𝑘)−1

)−1
𝐊(𝑘)

𝐱𝐱∗ + 𝐑(𝑘)
∗

𝐑(𝑘)
∗ ≜ 𝜎2 𝐈𝑀 (39)

The prior mixing proportion for new observations 𝜫[∗, 𝑘] is a fixed hyperparameter, weighting each component equally a priori,
such that 𝜫[∗, 𝑘] = 1∕𝐾. Interestingly, the predictive equations for the OMGP are similar to the conventional GP (Eq. (10)), however,
the noise component for the training data (𝐁(𝑘)−1) is scaled according to 𝜫̂[𝑖, 𝑘]−1 [15]. Thus, the noise component effectively weights
the contribution of each observation in  to its posterior predictive component in the mixture.

Another useful prediction categorises observations according to the most likely component 𝑘. For the training data , this is
simply the maximum a posteriori (MAP) estimate, given the approximated posterior (33),

𝑘̂𝑖 = argmax
𝑘

{

𝜫̂[𝑖, 𝑘]
}

(40)

For the test-data (i.e. weekly wind-power data {𝐱∗, 𝐲∗}) the posterior predictive class component 𝑘∗ is,

𝑝(𝑘∗ ∣ 𝐱∗, 𝐲∗,) =
𝑝(𝐲∗ ∣ 𝐱∗, 𝑘,)𝜫[∗, 𝑘]

𝑝(𝐲∗ ∣ 𝐱∗,)
(41)

where the denominator (evidence) was defined in (38), and the numerator is,

𝑝(𝐲 ∣ 𝐱 , 𝑘 ,) 𝑝(𝑘 ) ≜ 
(

𝐲 ∣ 𝝁(𝑘),𝜮(𝑘))𝜫[∗, 𝑘] (42)
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the MAP class component 𝑘̂∗ can then be defined,

𝑘̂∗ = argmax
𝑘∗

{

𝑝(𝑘∗ ∣ 𝐱∗, 𝐲∗,)
}

(43)

Note, classifying new data according to 𝑘̂∗ is only possible when both 𝐱∗ and 𝐲∗ have been observed. This implies that predictions
sing Eq. (43) should be used in certain monitoring applications (as demonstrated in the results).

.2.5. Input dependent noise approximations for the OMGP
At this stage, it is possible to apply heteroscedastic updates to the OMGP, according to the method in Section 5.3. In this case,

or each 𝑘th component, the noise variance is now considered a function of the inputs,

𝜎(𝑘)
2

𝑖 = 𝑟(𝑘)(𝑥𝑖) (44)

log 𝑟(𝑘)(𝑥𝑖) = 𝑔(𝑘)(𝑥𝑖) ∼ 𝐺𝑃 (𝜇(𝑘)
𝑔 , 𝑘(𝑘)𝑔 (𝑥𝑖, 𝑥𝑗 )) (45)

.e. there are 𝐾 GPs (with hyperparameters 𝜻𝑘 = {𝜇(𝑘)
𝑔 , 𝜎(𝑘)𝑔 , 𝑙(𝑘)𝑔 }) to describe input-dependent noise for each function in the mixture

— rather than a single, shared hyperparameter 𝜎.
Again, the predictive Eq. (38) remains similar, where the noise kernels are updated. In this case, 𝐁(𝑘) (from Eq. (35)) becomes,

𝐁(𝑘) = diag
({

𝜫̂[(𝑘)
1 , 𝑘]

𝑟(𝑘)
(

𝑥(𝑘)1

) , … ,
𝜫̂[(𝑘)

𝑁 , 𝑘]

𝑟(𝑘)
(

𝑥(𝑘)𝑁

)

})

(46)

here the indices 𝑘 = {(𝑘)
1 ,…(𝑘)

𝑁 } correspond to observations in  whose MAP label is 𝑘. Formally, {𝑥𝑖, 𝑦𝑖}𝑖∈𝑘
∈ , where

̂ 𝑖∈𝑘
= 𝑘. Additionally, 𝐑(𝑘)

∗ from Eq. (39) is updated,

𝐑(𝑘)
∗ ≜ diag

({

𝑟(𝑘)(𝑥∗1),… , 𝑟(𝑘)(𝑥∗𝑀 )
})

(47)

In summary, to approximate the noise-process for each component, the training data are split into 𝐾 subsets, according to the
MAP classification (43) given the homoscedastic OMGP and the training data. That is, the noise-processes are approximated for
each component, given the training data that are associated with that component (according to 𝑘̂𝑖) and the framework outlined in
Section 5.3.

7. Results

In total, 8900 observations were sampled from the wind farm data, corresponding to a (selected) subset of seven operational
turbines over nine weeks. As aforementioned, three trends are present in these data; additional curtailments may be observed in
practical data, and can be included in the OMGP if necessary — an alternative example is provided in Section 7.1. The data are
shown in Figs. 2 and 3. Approximately 1/3 (𝑁 = 2980 observations) were using for training here, and the remaining data (𝑀 = 5920
observations) were used as an independent test-set.

OMGP regression of the curtailed data is shown in Fig. 7. Given the training observations (larger ∙ markers), the model has
inferred the multivalued behaviour in an unsupervised manner, including the ideal curve (orange), ≈ 50% curtailment (green), and
the zero-power behaviour (purple).

Visually, the model is representative of the underlying functions, and it appears to generalise to the test data (smaller ⋅ markers).
Importantly, the GP successfully models the residual between prior engineering knowledge (encoded in the parametrised mean,
shown by the black lines in Fig. 7) and the data. Generally, the heteroscedastic updates are representative. The noise levels are
(perhaps) overestimated towards the asymptotes of the power curves (high and low wind speeds). Additionally, the noise for the zero-
power trend (purple) is overestimated, as it captures some of the data associated with the ideal/curtailed data — around negative
0.5 normalised wind speed. Smaller length scales 𝑙(𝑘)𝑔 in the noise-processes 𝑔(𝑘) might prove appropriate, as there is no guarantee
hat the parameter set

{

{

𝜽𝑘, 𝜻𝑘
}𝐾
𝑘=1 ,𝜫

}

represents the global minimum of the log-marginal-likelihood. However, following several
nitialisations, this realisation was the most representative (and repeatable).

To quantify performance, the normalised mean squared-error (NMSE) and Mahalanobis squared-distance (MSD) are provided.
s the OMGP is a mixture, each test observation is assessed against its most likely component 𝑘̂∗. In other words, NMSE and

normalised) MSD are assessed for each function with respect to their most likely data — the corresponding subsets are shown for
ach component in the (lower) plots of Fig. 7.

̂𝑁𝑀𝑆𝐸 = 100
𝑀𝜎2𝐲∗

(

𝝁(𝑘̂∗)
∗ − 𝐲∗

)⊤ (

𝝁(𝑘̂∗)
∗ − 𝐲∗

)

(48)

Similarly, the MSD is,

̂𝑀𝑆𝐷 = 1
𝑀

𝑀
∑

𝑖=1

(

𝝁(𝑘̂∗)
∗ [𝑖] − 𝐲∗[𝑖]

)2

𝜮(𝑘̂∗)[𝑖, 𝑖]
(49)
13
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Fig. 7. Heteroscedastic OMGP regression of curtailed power curve data. The mixture model in the original space (top), and each component in the zero-mean
transformed space, i.e. 𝑦̄𝑖 = 𝑦𝑖 −𝑚(𝑘)(𝑥𝑖) (bottom three plots). Black lines show the mean functions of the prior 𝐦(𝑘). The green, orange, and purple lines show the
predictive mean 𝝁(𝑘)

∗ , and shaded regions show three-sigma of the predictive variance diag(𝜮(𝑘)
∗ ). Small ⋅ markers show the test set, and larger ∙ markers show

the training set. For each component, the data correspond to their MAP function, according to 𝑘̂𝑖 and 𝑘̂∗.

Table 1
Model performance metrics for the curtailed power curve data.

Conventional regression Mixture of regressions

RVM GP OMGP Het-OMGP

NMSE 47.13 46.97 0.26 0.26
MSD 1.01 1.02 1.00 0.73

Table 1 quantifies significant improvements in representing the curtailed power data with a heteroscedastic OMGP. For reference,
an alternative probabilistic regression is included, previously applied in the literature [37], the Relevance Vector Machine (RVM);
implementation details are provided in Appendix C. It is reiterated, however: the focus is to show improvements of a mixture of
regressions, rather than improvements between conventional regression models.

The NMSE shows a marked advantage in representing the data with multiple latent functions. Nonetheless, the NMSE does not
highlight advantages of heteroscedastic updates, since the metric (48) does not consider the predictive variance 𝜮(𝑘)

∗ . Therefore, the
(normalised) MSD in Table 1 highlights improvements when modelling input-dependent noise for the mixture5.

As discussed, certain hyperparameters can be interpreted. 𝛼(𝑘)1 corresponds to the maximum (normalised) power in the prior,
and 𝛽𝑘 determines the rate of convergence (of the asymptote) for priors with sigmoidal mean functions. As expected, for the ideal
curve (𝑘 = 1) the mean of the prior tends to 𝛼(1)1 = 1.021. For 𝑘 = 2 the asymptote tends to 𝛼(2)1 = 0.4623; this provides a more
accurate estimate of the maximum curtailed output (46.23% rather than ≈ 50%). As expected, the rate of convergence is greater
for the curtailment data (𝛽2 = 28.8) and lower for the ideal data (𝛽1 = 11.4); this can be visualised in the plots of the prior mean
functions (black lines) Fig. 7.

5 It is acknowledged that the MSD is less useful when assessing the fit of the OMGP, as the error is scaled by the predictive variance 𝜮(𝑘)
∗ ; thus, the MSD is

used only to assess the predictive variance 𝜮(𝑘).
14
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Fig. 8. Heteroscedastic OMGP of curtailed data from an alternative group of turbines, also exhibiting 80% curtailment. Black lines show the mean functions
of the prior 𝐦(𝑘). The green, orange, purple, and pink lines show the predictive mean 𝝁(𝑘)

∗ , and shaded regions show three-sigma of the predictive variance
diag(𝜮(𝑘)

∗ ). Small ⋅ markers show the test set, and larger ∙ markers show the training set.

Table 2
Model performance metrics when 𝐾 = 4, including 80% curtailed data.

Conventional regression Mixture of regressions

RVM GP OMGP Het-OMGP

NMSE 10.46 10.19 0.15 0.15
MSD 0.98 0.98 0.70 0.66

7.1. Validation: more turbines and curtailments

To demonstrate the flexibility of the model it is used to infer 𝐾 > 3 latent functions, associated with a separate group of turbines in
the wind farm. As before, the turbines exhibit normal, 50% curtailment, and zero-power relationships; however, an 80% curtailment
is also observed. The priors of the OMGP are defined as in Section 6, with an additional soft-clip mean function component, such
that 𝐾 = 4. The number of components is verified via cross-validation in Appendix D. A total of 9973 observations are sampled from
the data, corresponding to a (selected) subset of four turbines over seven weeks. Approximately 1∕3 of the data are used for training
and 2∕3 for testing. A representative model is learnt for the alternative latent functions, visualised in Fig. 8. The same metrics are
presented in Table 2 to highlight improvements. Again, the hyperparameters of the OMGP are interpretable: in particular, for the
new curtailment 𝛼(𝑘)1 = 0.81, corresponding approximately to 80%.

The validation experiments with four components (𝐾 = 4) highlight that the OMGP can be used to represent a variety of
curtailment relationships, supporting modelling and monitoring procedures for a wide range of data that should be expected in
practice.

7.2. Towards population-based monitoring: entropy measures

Considering applications of monitoring in situ, the OMGP can be used to inform novelty detection and classification across the
wind farm. Novel observations of wind speed and power (from the full 125 week monitoring period) can be compared to the OMGP.
This approach to performance monitoring is an approach in population-based SHM, whereby a general model, referred to as the
form [24], is used to represent the behaviour of members within a population. In this case, the form is the OMGP and the population
is the wind farm.

When monitoring via the power curve, the error given the predicted output (e.g. Eqs. (48) and (49)) can be used for novelty
detection, as in [2,14,24]. Alternatively, with the OMGP, given wind speed and power observations, measurements can be classified
using 𝑘̂∗(43). Additionally, the distribution 𝑝(𝑘∗ ∣ 𝐱∗, 𝐲∗,) = 𝑃 (𝑘∗ ∣ 𝐱∗, 𝐲∗,) (41) is informative from a monitoring perspective;
this is the probability that {𝐱∗, 𝐲∗} were generated by component 𝑓 (𝑘) in the mixture. In other words, the probability that new data
correspond to:

• the normal curve (𝑘∗ = 1),
• 50% curtailment (𝑘∗ = 2),
• or zero-power (𝑘 = 3).
15
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Fig. 9. The simplex (grey triangle) associated with the distribution 𝑃 (𝑘∗ ∣ 𝐱∗ , 𝐲∗ ,). Points on the simplex represents observations of wind speed and power.
Blue ◦ markers highlight low entropy points, red ◦ markers highlight high entropy points.

As 𝑘∗ ∈ {1, 2, 3}, and ∑𝐾
𝑘∗

𝑃 (𝑘∗ ∣ 𝐱∗, 𝐲∗,) = 1 ∀{𝐱∗, 𝐲∗}, it is possible to view power curve data as points on a 3D simplex,
associated with the multinomial distribution 𝑝(𝑘∗ ∣ 𝐱∗, 𝐲∗,). The grey triangle in Fig. 9 visualises the simplex where points are
observations from the test set (concerning the 50% curtailment data). Although initially abstract, the plot is insightful from a
monitoring perspective. It indicates that classes one and two (ideal and curtailed trends) are regularly confused, while class three
(zero power) is equally confused with the others. This makes sense when inspecting Fig. 7: the ideal and curtailed trends are similar
up to a normalised wind speed of zero, while the zero-power trend is indistinguishable from 𝑘 = 1 and 𝑘 = 2 at low wind speeds.

Given this distribution, the Shannon-entropy can be used as a measure of uncertainty to indicate if it is likely that new data were
generated by latent functions within the OMGP,

𝐻(𝑘∗) = −
𝐾
∑

𝑗=1
𝑃 (𝑘∗ = 𝑗 ∣ 𝐱∗, 𝐲∗,) log𝑃 (𝑘∗ = 𝑗 ∣ 𝐱∗, 𝐲∗,) (50)

With regard to the simplex in Fig. 9, each corner of the triangle relates to low entropy, corresponding to data that are classified
with certainty (as 𝑘∗ = 1, 𝑘∗ = 2, or 𝑘∗ = 3). On the other hand, the centre corresponds to high entropy, i.e. observations for which
each component is equally likely (or none at all). During monitoring, high entropy data can be investigated, as it is unclear which
component generated them. Examples of high and low entropy data given the test set are shown by red and blue markers respectively
in Fig. 9. Following investigation, if it appears that new data correspond to an additional latent function (not yet included in the
form of the wind farm) the mixture can be updated accordingly by adding a component, such that 𝐾 ← 𝐾+1. Ideas behind modelling
and updating the form for a wind farm population (and subsequent monitoring) are the focus of future work.

8. Conclusions

A novel data-driven model for wind turbine power data has been proposed. Critically, the method is capable of representing
wind/power measurements including both curtailed and ideal operation. This is an alternative to the conventional approach, which
filters out (and removes) the curtailed (SCADA) data. Consequently, the model should be representative of in situ behaviour, rather
than ideal operation only.

A mixture of Gaussian processes infers multivalued wind-power relationships without labels to associate data to functions. Each
function corresponds to a different operational condition (power curve) for a wind farm population. The algorithm is unsupervised,
as labels to define which trend (ideal, curtailed, etc.) generated each of the measurements are not required; this information was not
available in the experiments here. For each function in the mixture, input dependent noise is considered, a critical consideration
when modelling power curve data. The model is applied to measurements from an operational wind farm, and it is shown to
generalise well, representing future measurements from the population for various sets of turbines and curtailments. Finally, ideas
for population-based power curve monitoring procedures (considering entropy measures) are introduced and discussed.
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Appendix A. Type-II maximum likelihood

Gaussian process hyperparameters, 𝜽 =
{

𝛽,𝜶, 𝜎𝑓 , 𝑙, 𝜎
}

, are (typically) optimised through empirical Bayes. This involves
maximising the marginal likelihood of the model,

𝑝(𝐲 ∣ 𝐱 ; 𝜽) = ∫ 𝑝(𝐲 ∣ 𝐱, 𝐟 )𝑝(𝐟 ∣ 𝐱) 𝑑𝐟

= 
(

𝐲 ; 𝐦, 𝐊𝐱𝐱 + 𝐑
)

(A.1)

By marginalising (integrating) out the latent function values 𝐟 , this moves a level up the Bayesian hierarchy — mitigating issues
of overtraining through the Bayesian Occam’s razor [19]. An optimisation of this objective should lead to a minimally-complex
model given the observed training data; for convenience and numerical stability, this is implemented as a minimisation of the
negative-log-marginal-likelihood w.r.t 𝜽,

𝜽̂ = argmin𝜽 {− log 𝑝 (𝐲 ∣ 𝐱 ; 𝜽)} (A.2)
− log 𝑝 (𝐲 ∣ 𝐱 ; 𝜽) ≜ − log

(

𝐲 ∣ 𝐦, 𝐊𝐱𝐱 + 𝐑
)

= 1
2
(𝐲 −𝐦)⊤

(

𝐊𝐱𝐱 + 𝐑
)−1 (𝐲 −𝐦)…

+ 1
2
log |

|

𝐊𝐱𝐱 + 𝐑|
|

+ 𝑁
2

log 2𝜋 (A.3)

The terms in Eq. (A.3) have an interpretable meaning: the first is a data fit (or error) term, the second is a model complexity term,
and the last is a constant [27].

Appendix B. Noise-process optimisation

Summarised from [23]:

1. given , learn an initial homoscedastic GP: 𝐺1 with hyperparameters 𝜃
2. given 𝐺1, estimate the empirical (log) input-dependent noise 𝐠′ at the inputs 𝐱 using Eq. (19)
3. given

{

𝐠′, 𝐱
}

, learn the noise process: 𝐺2 with hyperparameters 𝜻
4. given , estimate the heteroscedastic GP 𝐺3, using 𝐺2 to define 𝑟(𝑥𝑖) for the noise kernel
5. if not converged, set 𝐺1 ← 𝐺3, and go to step 2.

ppendix C. RVM benchmark

The Relevance Vector Machine (RVM) follows the implementation of Tipping [38], with a radial-basis function kernel,

𝑘(𝑥𝑖, 𝑥𝑗 ) = exp
{

−𝛾(𝑥𝑖 − 𝑥𝑗 )2
}

The hyperparameter 𝛾 of the kernel is determined by 5-fold cross-validation [27]. In the first (50% curtailed) experiments, an optimal
value was 𝛾 = 2, while in the second experiments (80% curtailed) 𝛾 = 1.6.

Appendix D. Example cross-validation

The corrected lower bound (36) can be monitored to indicate an appropriate number of components for the OMGP. This is shown
in Fig. D.10 for the model in Section 7.1. The maximum value of the lower bound corresponds to a mixture with four components
17
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Fig. D.10. Monitoring the corrected lower bound (𝑏𝑐 ) on the marginal likelihood while the number of components increases. The solid line represents the mean
and the dashed line shows three-sigma standard deviation (12 repeats).
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