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A Unifying Framework for
Probabilistic Validation Metrics
Probabilistic modeling methods are increasingly being employed in engineering applica-
tions. These approaches make inferences about the distribution for output quantities of
interest. A challenge in applying probabilistic computer models (simulators) is validating
output distributions against samples from observational data. An ideal validation metric
is one that intuitively provides information on key differences between the simulator out-
put and observational distributions, such as statistical distances/divergences. Within the
literature, only a small set of statistical distances/divergences have been utilized for this
task; often selected based on user experience and without reference to the wider variety
available. As a result, this paper offers a unifying framework of statistical distances/
divergences, categorizing those implemented within the literature, providing a greater
understanding of their benefits, and offering new potential measures as validation met-
rics. In this paper, two families of measures for quantifying differences between distribu-
tions, that encompass the existing statistical distances/divergences within the literature,
are analyzed: f-divergence and integral probability metrics (IPMs). Specific measures
from these families are highlighted, providing an assessment of current and new valida-
tion metrics, with a discussion of their merits in determining simulator adequacy, offering
validation metrics with greater sensitivity in quantifying differences across the range of
probability mass. [DOI: 10.1115/1.4045296]

1 Introduction

Validation is a crucial part of any model generation, especially
for complex computer models (herein defined as simulators),
without which, trust in outputs for specific input domains cannot
be obtained. Traditionally, validation metrics for quantifying the
simulators’ level of adequacy have been deterministic, as most
modeling techniques produce deterministic outputs. In this setting,
distance metrics are commonly used, such as mean squared errors
and L2-norms as they provide a clear and interpretable method of
validating and understanding the simulators performance. How-
ever, in recent years, best practice in validation [1,2] has seen a
move toward understanding and quantifying uncertainties within
the modeling procedure, providing better information to make
more robust decisions from simulators. By incorporating uncer-
tainties, simulator outputs provide more information than just a
mean (or deterministic) prediction. This presents new challenges
in selecting validation metrics such that both the mean predictive
performance and uncertainties are appropriately assessed.

This paper focuses on the problem of quantifying differences
between probabilistic simulator outputs and observational sam-
ples, specifically the distance between two distributions from
these sources. As a result, the simulator output and observational
variables considered in this paper are those that can be defined as
random variables, typically applying to ordered magnitude varia-
bles, e.g., stress, acceleration etc., as well as ratio variables, such
a temperature in Kelvin. The Area Metric and Kolmogorov dis-
tance have been extensively applied in this scenario [2–6]. This
paper provides a context for these distances by defining their rela-
tionships within a wider range of statistical distances, specifically
those related to the f-divergence and integral probability metric
(IPM) families of distances. Considering these broader families of
distances provides not only new understanding of these estab-
lished distance metrics, but also reveals measures with novel
potential for application as validation metrics.

The list of validation metrics within this paper is not intended
to be exhaustive, but encompasses those commonly implemented
within the literature. For example, the reliability metric, which

has been developed for similar purposes, is not categorized by
these two families [7,8]. This is because the reliability metric
assesses the probability that the Mahalanobis distance between the
simulators’ mean and observational data, given the simulator
covariance, is less than a given tolerance (meaning it only consid-
ers low order statistical moments) and is better categorized as a
type of hypothesis, with the authors linking it to Bayesian hypoth-
esis testing [7,8]. It is noted that although the emphasis of this
paper is in validation metrics that quantify differences between
distributions, each of the measures presented has its own hypothe-
sis test, which could be used to make informative decisions.

The outline of the paper is as follows: Section 2 provides a cri-
terion for an ideal validation metric, clarifying the difference
between a validation metric and the mathematical definition of a
metric. Subsequently, the two families of measures, f-divergences
and IPMs, respectively, are introduced in Secs. 3 and 4; with spe-
cific measures within these families defined and reviewed. These
distance/divergence measures are demonstrated on numerical
examples (Sec. 5) in order to demonstrate and evaluate their
applicability as validation metrics. Following these discussions,
the measures are applied to model predictions from Bayesian his-
tory matching (BHM) on a five-story building structure (Sec. 6).
These provide a practical examination of the information each
provides, leading to a discussion on how to use these measures in
practice. Finally, Sec. 7 offers conclusions and highlights areas
for further research.

2 Validation Metrics and Metrics

This paper is concerned solely with validation metrics in a
probabilistic setting, and in comparing their performance in pro-
viding a quantification of differences between distributions. The
definition of a validation metric is a computable measure that
quantifies the agreement between predictions from a simulator
and observational data [2,4,9]. It has been stated in the literature
that a validation metric should be separate from the criteria used
in deciding whether to accept the simulator for a particular predic-
tive context, and therefore a given validation metric is only
required to quantify the difference [4,9].

In order to assess the merits of particular distances/divergences
as validation metrics, it is appropriate to define criteria for an ideal
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validation metric. Combining previous criteria from the literature
[3,4,9], and the authors’ opinions, these criteria in the context of
probabilistic engineering simulators are:

(1) It should quantify the difference between the simulator pre-
dictions and observational data [3,4,9]

(2) It should be interpretable and aid identifying simulator
improvements

(3) It should provide objective information and be consistent
when applied to different probabilistic models or applica-
tions [3,4]

(4) It should account for the complete form of the distribution
(and not just statistical moments)—if the underlying distri-
bution of the observational data is unknown, it should
ideally have a nonparametric estimator with convergence
guarantees

For clarity of terminology within this paper, the term validation
metric is used to refer specifically to those mathematical operators
that quantify the dissimilarities between predictions and observa-
tional data. The term metric, where used on its own, refers to the
strict mathematical distance definition, i.e., a distance Dð�; �Þ is a
metric if it abides by four requirements [2]:

(1) non-negative: Dðx; yÞ � 0;
(2) identity of indiscernibles: Dðx; yÞ ¼ 0 if and only if x¼ y;
(3) symmetric: Dðx; yÞ ¼ Dðy; xÞ;
(4) triangle inequality: Dðx; zÞ � Dðx; yÞ þ Dðy; zÞ
where x, y, and z are three quantities (which for the simplest

case would be points). It may be necessary for a validation metric
to be a mathematical metric; the merits of this will be discussed
further within this paper.

Finally, it is noted that each of the measures investigated as
potential validation metrics within this paper can be formed into a
frequentist hypothesis test, where the null hypothesis is that the
simulator output and observational distributions are equal. By pos-
ing the problem of whether simulator outputs are adequate as a
hypothesis test, a simulator can be determined inadequate, for a
given significance level, if it causes the null hypothesis to be
rejected (it is noted that statistically a hypothesis can never be
proved, only rejected).

At a fundamental level, a hypothesis test provides a statistically
rigorous framework for calculating a threshold, based on a given
statistical distance, with which to make a decision about whether
the simulator is invalid. The process for obtaining this threshold
will be different for each measure, and will lead to different prop-
erties of the hypothesis test. In addition, the effectiveness of a
given hypothesis test will depend on the distance/divergence mea-
sure it is constructed from. For these reasons, the paper focuses on
the abilities of each measure investigated to quantify differences
between distributions that occur anywhere within the probability
mass, and does not perform hypothesis testing. If a measure is
unsuccessful in quantifying dissimilarities anywhere in the proba-
bility mass, then it will not perform well as a general hypothesis
test.

3 f-Divergences

The first family of distances/divergences considered are
f-divergences (also known as Csisz�ar’s /-divergences). This
category includes measures such as the Kullback–Leibler (KL)
divergence, and defines distances/divergences that depend on a
ratio between probability measures [10]. These measures are of
the form

D/ P;Qð Þ ¼
ð

M

/
dP

dQ

� �
dP (1)

where M is a measurable space and / is a convex function. P and
Q are stated as probability measures, but generally will be utilized
in the form of a probability density function (PDF) or cumulative

density function (CDF). Equation (1) holds when P is absolutely
continuous with respect to Q and �1 otherwise. Different forms
of the f-divergence depend on the choice of function / with nota-
ble cases being the KL divergence, /ðtÞ ¼ t logðtÞ, Hellinger
distance, /ðtÞ ¼ ð

ffiffi
t
p
� 1Þ2, and total variation distance, /ðtÞ ¼

jt� 1j [10]. This family of divergence measures is widely used
throughout information theory and machine learning [11].

3.1 Kullback–Leibler Divergence. The KL divergence is the
most widely used f-divergence and has many applications. A nota-
ble example is in performing variational inference as it represents
a natural formulation of the ratio between two likelihood func-
tions [12]. The KL divergence of probability measures P and Q
is

DKL P;Qð Þ ¼ KL PjjQð Þ ¼
ð

p xð Þlog
p xð Þ
q xð Þ

� �
dx (2)

where p(x) and q(x) are probability distributions of the random
variable x, and is a measure of relative entropy [11]. It takes either
the units nats or bits depending on the base of the logarithm,
respectively, exponential or base two. The divergence informs of
the average number of extra nats (or bits) required to encode the
data given that the distribution Q is used to model the “true” dis-
tribution P. More simply, it measures information lost when Q is
used approximate P. It is noted that a frequentist hypothesis test
exists for the KL divergence [13]. Resultantly, the hypothesis test
could be used to objectively determine whether there are statisti-
cally significant differences between the simulator and observatio-
nal distributions.

The KL divergence can be difficult to estimate when the distri-
bution form is unknown, and often proves challenging when the
dimension size of samples increases (i.e., in the instants where d
increases when M ¼ Rd). On the other hand, the divergence can
be practical to compute between low-dimensional probability den-
sity functions and therefore is useful when the observational den-
sity function is known or can be accurately approximated.

Empirical estimation of the KL divergence in a nonparametric
manner for continuous distributions can be performed using sev-
eral approaches [14,15]. However, often these nonparametric esti-
mators require large sample sizes in order to converge as
illustrated in Fig. 1. This example studies the convergence rate of
one method for obtaining empirical estimate of the KL diver-
gence, calculated via data-dependent partition method proposed
by Wang et al. [14]. In this example, the empirical estimator is
obtained when samples are drawn from two Gaussian distribu-
tions, P � Nð0; 1Þ and Q � Nð1; 1Þ. 500 repetitions were per-
formed at each sample size in order to demonstrate the variance of
the estimator. It is clear from Fig. 1 that although the estimator
will converge, this can be slow and requires a large sample size.

Fig. 1 Estimation of KL divergence using data-dependent par-
titions where P � N (0;1) and Q � N (1; 1). DKL(P;Q) ¼ 0:5.
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In most engineering applications, it is often not possible to obtain
even hundreds of samples at each input indicating a drawback
with the estimator.

3.1.1 Jenson–Shannon Distance. The KL divergence is not a
true mathematical metric as it does not meet two of the four
requirements: it is neither symmetric nor does it obey the triangle
inequality. A smoothed and symmetrized form of the KL diver-
gence is the Jenson–Shannon divergence [16], which, by taking
the square root, becomes a metric, known as the Jenson–Shannon
distance

DJSD P;Qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
DKL P;Mð Þ þ 1

2
DKL Q;Mð Þ

r
(3)

where M ¼ ð1=2ÞðPþQÞ and is the midpoint of the probability
measures P and Q. The Jenson–Shannon distance will always
produce a finite result, unlike the KL divergence as P and Q are
always absolutely continuous with respect to M [16]. The compu-
tational overheads of the Jenson–Shannon distance are high due to
the evaluation of the mixture distribution M, which becomes pro-
hibitive in high dimensional data [17]. By construction, it is less
sensitive to scenarios when distribution Q contains sample values
that are impossible in P, unlike the KL divergence, as it is
bounded [16].

3.2 Hellinger Distance. The Hellinger distance is another
statistical distance within the f-divergence family. It can be con-
sidered analogous to the Euclidean distance as it is the L2-norm
between two probability measures

DH P;Qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

ð ffiffiffiffiffiffiffiffiffi
p xð Þ

p
�

ffiffiffiffiffiffiffiffiffi
q xð Þ

p� �2

dx

s
(4)

and is formed such that DHðP;QÞ � 1. In addition, the Hellinger
distance is a metric meeting all four requirements. This provides
an intuitive interpretation of the distance where values of zero
mean the two probability density functions are exactly equal and a
distance close to one indicates very dissimilar probability density
functions; however, the distance will nonlinearly change within
these bounds. Frequentist hypothesis tests utilizing the Hellinger
distance also exist, which may aid decision-making about simula-
tor adequacy [18,19].

3.3 Total Variation Distance. Total variation distance is the
L1-norm equivalent to the Hellinger distance [20]

DTV P;Qð Þ ¼ 1

2

ð
jp xð Þ � q xð Þjdx (5)

and is the only distance measure that can be classified as both an
f-divergence and IPM (discussed in Sec. 4) [10]. In IPM form,
total variation is written as

DTVðP;QÞ ¼ sup
jjf jj1�1

jpðxÞ � qðxÞj (6)

and, like the Hellinger distance, total variation takes values in
[0 1] aiding objectivity across applications. The metric can also be
used within a frequentist hypothesis test [21].

4 Integral Probability Metrics

Integral probability metrics differ from f-divergences as they
depend on the difference rather than ratio of probability measures.
The general form of IPMs is defined as

DF ðP;QÞ ¼ sup
f2F
j
ð

M

f dP�
ð

M

f dQj (7)

where F is a class of functions on M and sup is the supremum:
the least upper bound of pointwise differences. The choice of
F leads to various IPMs, such as the total variation distance
where F ¼ f f : jjf jj1 � 1g; the Kolmogorov distance where
F ¼ f1ð�1;t� : t 2 Rdg; maximum mean discrepancy (MMD)
where F ¼ ff : jjf jjH � 1g (i.e., all f that are reproducing Kernel
Hilbert space (RKHS), H); and the Wasserstein distance where
F ¼ ff : jjf jjL � 1g where L here refers to Lipschitz functions.
These distances and their properties are considered in more depth
below.

4.1 Kolmogorov Distance. The Kolmogorov distance is the
maximum L1-norm between two CDFs bounded [0 1] and mathe-
matically defined as

DKðP;QÞ ¼ sup
x2R

jFPðxÞ � FQðxÞj (8)

where FPðxÞ is a CDF for the probability measure P over the ran-
dom variable x. The Kolmogorov distance is simply the largest
vertical difference between the two CDFs and is most commonly
used in hypothesis testing [22].

Figure 2 illustrates an example of the distance for a set of sam-
ples (forming an empirical cumulative density function (ECDF)1)
F̂QðxÞ and a known distribution FPðxÞ. Note, however, the dis-
tance holds if either P or Q are known or empirical. This is an
advantage of the Kolmogorov distance, meaning it has the ability
to handle a mixture of empirical and/or known CDFs, making it a
flexible nonparametric tool for validation purposes.

The Kolmogorov distance is closely related to the total varia-
tion distance, described in Sec. 3.3. If the probability function is
nondecreasing, then total variation will provide the same solution
as the Kolmogorov distance [23]. Furthermore, total variation is
an upper bound on the Kolmogorov distance, i.e., DKðP;QÞ �
DTVðP;QÞ [20].

4.2 Maximum Mean Discrepancy Distance. Maximum
mean discrepancy is a measure of the maximum distance between
the mean embeddings of two sample sets in a RKHS; projected
using the function class F , where the function f is called a repro-
ducing kernel kð�; �Þ [24]. The distance is defined as

DMMDðP;QÞ ¼ sup
f2F
jExðf ðxÞÞ �Eyðf ðyÞÞj (9)

Fig. 2 An example of the Kolmogorov distance between P ¼
N (0;0:82) and 20 samples from Q ¼ T (5) where DK (P;Q) ¼ 0:26

1An ECDF is mathematically defined as F̂N

�
xÞ ¼ ð1=nÞ

Pn
i¼1 1ðXi � x

�
.
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where x and y are samples from P and Q, respectively. There are
several kernel types that can be chosen within the MMD metric, with
a popular choice being the radial basis kernel [24,25], defined as

k x; x0ð Þ ¼ exp � jjx� x0jj2

2r2

� �
(10)

where r is an associated hyperparameter that controls the width of
the kernel. It is noted that most kernels will have some set of
hyperparameters that need to be determined. A common approach
for determining these hyperparameters is to use the median pair-
wise distance among the joint data [26]. The choice of kernel
should reflect the prior belief about the smoothness of the underly-
ing distribution and is often selected in a heuristic manner. How-
ever, Gretton et al. proposed an optimization methodology for
large sample sets in Ref. [27] whereby for a given a level (the sig-
nificance level of a hypothesis test [24,25,28]), the technique
selects linear combinations of kernels that minimize the probabil-
ity of type II errors and thus maximize the test power when used
as the metric for a two sample hypothesis test [24]. In this paper
by Gretton et al., the method is shown to perform well in the con-
text of large data sets, where estimating the hyperparameter via a
median heuristic approach and kernel selection via selecting the
kernel with the largest MMD (i.e., choosing the conservative ker-
nel) fails. In contrast, most validation tasks present the converse
problem of involving small sample sizes where limited data could
pose challenges to implementing this procedure.

Maximum mean discrepancy is a frequentist statistic and thus
can be empirically estimated in both unbiased and biased forms,
depending on whether the sample means are calculated using the
U-statistics (unbiased)

D2
MMDu P;Qð Þ ¼ 1

m m� 1ð Þ
Xm

i¼1

Xm

j 6¼i

k xi; xjð Þ

þ 1

n n� 1ð Þ
Xn

i¼1

Xn

j6¼i

k yi; yjð Þ

� 2

mn

Xm

i¼1

Xn

j¼1

k xi; yjð Þ (11)

or V-statistics (biased)

D2
MMDb P;Qð Þ ¼ 1

m2

Xm

i;j¼1

k xi; xjð Þ þ
1

n2

Xn

i;j¼1

k yi; yjð Þ

� 2

mn

Xm;n
i;j¼1

k xi; yjð Þ (12)

where m and n are the number of points in the samples X and Y,
respectively. These two forms of the statistic will both be zero
when P ¼ Q and large when the distributions are far apart. MMD
is a nonparametric technique, meaning that the form of the distri-
bution does not need to be known before estimation.

4.2.1 Maximum Mean Discrepancy Witness Function. MMD,
defined in Eq. (9), provides a key additional benefit in that the ker-
nel embedding can be applied over a variable t in order to visual-
ize the behavior of the RKHS embeddings. This produces the
witness function, f �. An empirical estimation of the witness func-
tion can be defined as

f � tð Þ / 1

m

Xm

i¼1

k xi; tð Þ �
1

n

Xn

i¼1

k yi; tð Þ (13)

and used to provide a method for visually determining the dissimi-
larities between two distributions. The witness function is zero
intuitively where the two distributions are the same, positive when
P is larger than Q, and negative when Q is greater than P, as far
as the smoothness constraint allows.

To demonstrate the effectiveness of the witness function, a one-
dimensional example is presented in Fig. 3. The scenario consid-
ers the difference between a Student’s t-distribution with eight
degrees-of-freedom and a Laplace distribution, Lð0; 0:71Þ. 10,000
samples were drawn from each distribution and the MMD distan-
ces (both biased and unbiased) calculated using a radial basis ker-
nel with r ¼ 0:85; DMMDu ¼ DMMDb ¼ 0:11. Visually, the
witness function in Fig. 3 highlights where key differences in the
probability mass occur.

The witness function can be implemented as a tool for locating
the differences between distributions and helping diagnose model
inadequacies. For example, if in Fig. 3 X are simulator predictions
and Y observations, it can be easily identified that more probabil-
ity mass is located around zero from the sample set Y than is mod-
eled by X; this is indicated by negative values in the witness
function. In addition, X has more probability mass in both tails,
indicated by the positive values in the witness function. A near
symmetric witness function indicates that the mean predictions
are very similar. The witness function in this example would diag-
nose a conservative simulator output, where a distribution with a
steeper probability mass decay from the mode would improve the
prediction. In this one-dimensional case, this information may
appear obvious; however, this will not always be the case in more
complex and bespoke distributions. Furthermore, in higher dimen-
sional spaces, it becomes challenging to compare two PDFs. The
witness function potentially provides a very useful, low dimen-
sional, interpretable diagnostic for such scenarios.

Fig. 3 An example of a witness function between 10,000 samples from X � T (8) and
Y � L(0;0:71); DMMDu ¼ DMMDb ¼ 0:11, where L(�; �) and T ( � ) are Laplace and Student’s t-
distributions. A radial basis kernel where r is inferred from the median heuristic is implemented.
Panel (a) are the PDFs of the distributions from which the finite samples are drawn and panel (b)
are the kernel embeddings of the two samples and the witness function over a space t.
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4.3 Area Metric. The Area Metric, proposed by Ferson et al.
[3], is a popular validation metric in engineering for assessing the
difference between two distributions [2,4–6]. The Area Metric is
the area of the L1-norm between two CDFs

DAreaðP;QÞ ¼
ð
jFPðxÞ � FQðxÞjdx (14)

and is illustrated in Fig. 4.
The metric also represents the distance between quantile func-

tions (inverse CDFs), i.e.,
Ð
jF�1

P ðpÞ � F�1
Q ðpÞjdp where p is

a probability [2]. This is the definition of a Kantorovich metric,

i.e., DWðP;QÞ ¼
Ð
jFPðxÞ � FQðxÞjdx ¼

Ð
jF�1

P ðpÞ � F�1
Q ðpÞjdp

where F�1 is the inverse function of the general distribution
function F [29,30]. This means that the Area Metric is part of the
Wasserstein (or Kantorovich) distances, and is, in fact, the univar-
iate case. As a result, the Wasserstein distance hypothesis tests
[31] could be applied to the Area Metric such that decisions could
be made about the statistically significant differences between
simulator predictions and observational data. More generally, the
Area Metric is part of a family of metrics, known as the Lp met-
rics, where the Lp-norm is taken rather than L1 [29].

Oberkampf and Roy state in Ref. [2] that a significant merit of
the Area Metric is that the units are that of the quantity in ques-
tion, i.e., if the random variable X were an observation of stress in
MPa then the units of the Area Metric are also MPa, since proba-
bility is dimensionless [2]. The distance therefore scales with the
units of observed quantity.

5 Numerical Case Studies

In order to compare the statistical distances/divergences intro-
duced in Secs. 3 and 4 against the criteria in Sec. 2, several
numerical examples are considered. These case studies are
intended to demonstrate relative differences between the meas-
ures, in regard to the validation metric criteria, and not as a com-
plete mathematical analysis of each equation’s sensitivities.

The scenarios considered in this section are all comparisons of
continuous distributions with known mathematical forms. In order
to keep comparisons consistent, numerical integration is imple-
mented to calculate each distance/divergence (however, it is noted
that for certain distribution forms, the integrals in some distances/
divergences can be solved in closed form, e.g., the Hellinger dis-
tance between two Gaussian distributions).

The first two scenarios explore the sensitivity of these distance/
divergence measures to changes in lower order moments, specifi-
cally in the context of Gaussian distributions, P � Nð0; 1Þ and
Q � Nðlx; r

2
xÞ. In the first case study, the mean lx is varied and

the variance r2
x is fixed, the second case considers the mean lx

fixed and the standard deviation rx variable. The third example
quantifies each distance/divergence between several other distri-
bution forms. As a result, comments are made about each meas-
ure’s sensitivity to general changes in probability mass such that
the fourth validation metric criteria in Sec. 2 can be more widely
assessed.

5.1 Sensitivity to Variation in the Mean—Gaussian
Distribution Case. Figure 5 displays a comparison of the distan-
ces/divergences when the mean is varied (in a Gaussian distribu-
tion context). Figure 5(a) presents the KL divergences and Area
Metric, as these both have units, with Fig. 5(b) showing a compar-
ison of the remaining dimensionless measures.

For this example, the KL divergence is symmetric (i.e.,
DKLðP;QÞ ¼ DKLðQPÞ). It is also slow to increase and as a
result, may struggle to detect small variations in the mean. The
unbounded nature of the KL divergence also makes it a difficult
measure to interpret, especially if used as a validation metric. In
contrast, the Area Metric values are equal to the distance between
the two distribution means, i.e., when lx ¼ 2; DAreaðP;QÞ ¼ 2.
This result follows, as the Area Metric mathematically becomes
the distance between the two distribution means, when the
remaining statistical moments (in this case the variances) are the
same.

Fig. 4 An example of the Area Metric (the shaded region)
between P ¼ N (0;0:82) and 20 samples from Q ¼ T (5). In this
case, DArea(P;Q) ¼ 0:64.

Fig. 5 A comparison of probabilistic distances/divergences
for two Gaussian distributions, P � N (0; 1) and Q � N (lx ; 1);
where the mean lx is varied from [26 6] with a fixed variance.
Panel (a) shows the KL divergences and Area Metric, as these
have units. Panel (b) presents the Hellinger, total variation, Kol-
mogorov, and MMD distances. The MMD distance is calculated
from 2000 samples with a radial basis kernel where r is inferred
from the median heuristic, and all other distances from numeri-
cal integration over the range [230 30] in 0.01 steps.
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Comparing the distance metrics bounded on [0 1]—the
Hellinger, total variation, and Kolmogorov distances—illustrates
that total variation and Kolmogorov distances are equally more
sensitive to the change in mean (based on these measures gra-
dients) between [�2 2], where outside of this interval the Hellin-
ger distance is then more sensitive. With the knowledge that these
have an upper bound of 1, the distances become quite large rela-
tively quickly, i.e., when lx ¼ 2, total variation and Kolmogorov
distances are 0.68 compared with 0.62 for the Hellinger distance.
For this scenario, the distances can be interpreted as not close and
would lead to an acknowledgment of significant inadequacy in the
relationship between the simulator and observations. It is argued
that these distances give a better indication of the relative differ-
ence between the distributions, providing a more objective com-
parison when compared with the KL divergence and Area Metric.
The MMD distances do not have an upper bound but track

relatively consistently with the total variation, Kolmogorov, and
Hellinger distances. It is noted that the MMD’s nonparametric,
sample-based approximation of the distributions leads to oscilla-
tions in the metrics. Additionally, both bias and unbiased results
are very similar and become less sensitive to changes in the mean
� 4 and � �4 when compared with the Kolmogorov and Hellin-
ger distances.

5.2 Sensitivity to Variation in the Standard Deviation—
Gaussian Distribution Case. The second scenario, shown in
Fig. 6, considers variations in the standard deviation with a fixed
mean. Figure 6(a) presents the KL divergences and Area Metric.
This example demonstrates the asymmetric nature of the KL
divergence where more nats of information are required in order
to encode Q when P is the model distribution than in the oppos-
ing case. This is because there is a greater overlap in probability
mass when Q approximates P, and therefore less information
required to encode P, than in the alternative case for this example
(however, in the scenario where the means are varied and the
standard deviations are fixed, the overlap in probability mass is
the same for both cases). This means that the KL divergence will
often favor conservative model distributions, which can be useful
for a validation setting. However, this can also be a negative
attribute of the KL divergence, as it could lead to a modeler over-
inflating the predictive uncertainties from a simulator such that it
produces a lower KL divergence. Moreover, the units of the KL
divergence are difficult to intuitively interpret. The Area Metric,
on the other hand, linearly scales with a change in variance and
appears almost symmetric about the variance of P. This suggests
that the Area Metric struggles to differentiate between under- and
over-estimations of the variance, an unhelpful property in valida-
tion. Nonetheless, the Area Metric is valuable as the units are the
same as the quantity of interest.

In comparison, total variation, Hellinger, and Kolmogorov dis-
tances, displayed in Fig. 6(b), appear more sensitive to underesti-
mation of the variance, indicated by a steeper gradient of
distances below a standard deviation of 1. In this case study, total
variation is more sensitive to changes in the standard deviation
than the Hellinger or Kolmogorov distances. Here, the Kolmo-
gorov distance becomes less sensitive than the Hellinger distance,
which is due to the fact that the Kolmogorov distance is less sensi-
tive to changes in the tails, compared to difference in the central
probability mass. Again, both MMD distances track in a similar
manner to the Hellinger distance between standard deviations of
0.5 and 2, becoming less sensitive outside these values, but still
penalizing under-estimation of the variance more heavily than
over-estimation.

5.3 Different Distribution Forms. The next examples, pre-
sented in Tables 1 and 2, compare the statistical distances for dif-
ferent forms of distribution. The first two examples compare
standard Gaussian and Laplace distributions (with the same mean
and variance)—example one—as well as standard Gaussian and
Student’s t-distributions—example two. These two comparisons
have been chosen as the distribution forms in each case have small
dissimilarities, as shown in Fig. 7. For these two examples, the
KL divergences (in both directions) indicate that relatively small
amounts of information are required to encode the “true”

Fig. 6 A comparison of probabilistic distances/divergences
for two Gaussian distributions, P � N (0; 1) and Q � N (0; r2

x );
where the standard deviation rx is varied from [0 6] with a fixed
mean. Panel (a) shows the KL divergences and Area Metric, as
these have units. Panel (b) presents the Hellinger, total varia-
tion, Kolmogorov, and MMD distances. The MMD distance is
calculated from 2000 samples with a radial basis kernel where r
is inferred from the median heuristic, and all other distances
from numerical integration over the range [230 30] in 0.01
steps.

Table 1 Examples of f-divergences for different distributions

Example P Q DKLðP;QÞ DKLðQ;PÞ DHðP;QÞ DTVðP;QÞ

1 Nð0; 1Þ Lð0; 0:71Þ 0.07 0.23 0.16 0.12
2 Nð0; 1Þ T ð5Þ 0.03 0.12 0.11 0.06
3 Gð2; 1Þ N ð1; 1Þ — 1 0.38 0.25
4 Uð�4; 4Þ N ð0; 1Þ — 1 0.46 0.49

Numerically integrated over the range [�30 30] in 0.01 steps. KL divergences are in nats.
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distribution, from the low KL divergences given the log–ratio
relationship.

The Kolmogorov distance shows very small distances, which is
expected given its insensitivity to differences away from the cen-
tral probability mass. The MMD distances, both biased and
unbiased, produce comparable results calculating larger distances
for the Laplace than the Student’s t-distributions. The biased
MMD produces almost equivalent distances to the total variation
distance. The Hellinger distances also show that the standard
Gaussian is closer to the Student’s t-distribution than the Laplace
distribution, but by a relatively smaller amount. The two Area
Metrics for these examples are equal. This demonstrates a failure
to capture the knowledge that a Student’s t is expected to be closer
to the standard normal than a Laplace distribution.

Evaluating the KL divergence for the next two examples—a
comparison of Gamma and Gaussian distributions in example
three, and of uniform and Gaussian distributions in example
four—presents issues with using numerical integration, but pro-
vides informative results. The Gamma distribution contains no
probability mass below zero, as it is bounded at one end. It is,
therefore, impossible for a Gaussian distribution that has symmet-
ric probability mass over the [�1 1] range, to ever be able to
replicate the Gamma distribution, given any amount of additional
information; it will always have some probability mass beyond
the bound. In contrast, a Gamma distribution would require an
infinite amount of additional information below zero to replicate
the Gaussian distribution. The KL divergence, calculated in this
manner, is extremely informative in diagnosing these issues, i.e.,
that it is not possible to model the observational distribution using
the simulator distribution. Similar problems also exist in the com-
parison of uniform and Gaussian distributions, given that the uni-
form distribution contains no probability mass outside of its
range.

The Kolmogorov distances for these examples are the same,
illustrating once again the insensitivity of this measure to devia-
tions that are outside the central probability mass. Moreover, the

total variation, Hellinger, and MMD distances, including the Area
Metric, all quantify that the uniform and Gaussian distribution dis-
tances are further than the Gamma and Gaussian distribution.
Once more, the total variation is almost equivalent to the MMD
distances.

5.4 Discussion of Numerical Case Studies. The results from
empirical numerical observations indicate the strengths and weak-
nesses of the distances/divergences considered. It can be summar-
ized that the KL divergence becomes very sensitive in scenarios
where large amounts of extra information are required to replicate
the “true” distribution, and its convex nature makes it ideal for
optimization settings. This makes the divergence useful for sce-
narios when the question of whether to obtain more observations
or simulator runs to solve issues of inadequacy is asked. The
major drawback of the KL divergence is, it is not easily
interpretable.

The Kolmogorov distance is flawed as a general distribution
validation metric for the aforementioned reasons. It is not recom-
mended as the sole qualification of the distance between distribu-
tions as it fails to adequately meet the fourth validation metric
criteria in Sec. 2. The total variation, Hellinger, and Kolmogorov
distances are arguably more objective in comparing two distribu-
tions given that 0 indicates they are the same and 1 that the distri-
butions are as far as possible—criteria three from Sec. 2.
Furthermore, the total variation and Hellinger distances provide
better quantification of a wider variety of differences when com-
pared to the Kolmogorov distance. These two distances are sensi-
tive to a variety of differences in probability mass and would be
appropriate for most engineering applications, and in the author’s
opinion are relatively interpretable from the results in Table 1.

Furthermore, the MMD distances for these numerical case stud-
ies tend to provide similar distances to both the total variation and
Hellinger distances, and may be practical in a variety of settings
due to its nonparametric formulation. However, for small sample
sizes, it will be more dependent on kernel and hyperparameter
choices adding a level of modeler input that may be unwanted—
although calculation of the median heuristic removes a level of
subjectivity.

Finally, the Area Metric, although in the units of the quantity of
interest, is relatively hard to objectively interpret. The Area Met-
ric also displayed difficulty in differentiating between under- and
over-estimation of the variance for these numerical examples,
often problematic when conservative results are required.

It is noted that all the examples considered here have been for
univariate distributions. Different conclusions may be found with
higher dimensional distributions in line with the findings of
Aggarwal et al. where fractional norms increase sensitivity for
high-dimensional nonstatistical distances [32]. This is left as fur-
ther research, as this paper is focused on providing a framework
for utilizing statistical distances in the validation of probabilistic
model outputs.

6 Case Study: Bayesian History Matching Example

An experimental case study is provided in order to demonstrate
the applicability of the considered distance/divergence measures

Fig. 7 Distributions used in the comparison of distance/
divergences

Table 2 Examples of IPM distances for different distributions

Example P Q DKðP;QÞ DMMDuðP;QÞ DMMDbðP;QÞ DAreaðP;QÞ

1 Nð0; 1Þ Lð0; 0:71Þ 0.06 0.12 0.12 0.15
2 Nð0; 1Þ T ð5Þ 0.03 0.04 0.05 0.15
3 Gð2; 1Þ N ð1; 1Þ 0.25 0.26 0.26 1.00
4 Uð�4; 4Þ N ð0; 1Þ 0.25 0.44 0.44 1.20

Numerically integrated over the range [�30 30] in 0.01 steps apart from the MMD distances, which are estimated from 2000 samples with
a radial basis kernel where r is inferred from the median heuristic.
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as validation metrics. The case study considers a five story build-
ing structure displayed in Fig. 8 constructed from aluminum 6082.
The objective of this analysis was to calibrate the three material
properties h ¼ fE; �; qg of a finite element computer model, using
BHM in order to predict the first five bending natural frequencies
fx1;x2;x3;x4;x5g of the structure under varying levels of
mass, x ¼ f0; 0:1;…; 0:5g kg, attached to the first floor.

Experimental data were obtained using experimental modal
analysis, whereby the structure was excited laterally with a
409.6 Hz bandwidth Gaussian excitation via an electrodynamic
shaker and five accelerometers used to capture the response at
each floor. The sample rate and sample time were chosen such
that the frequency resolution was 0.05 Hz. 40 averages were
acquired for each measurement and for each level of mass, ten
repeats were performed in order to obtain an understanding of the
underlying modal frequency distribution.

The data used in the calibration process were the mean natural
frequencies when the mass was xz ¼ f0; 0:3; 0:5g kg. The remain-
ing full repeat data were used as an unseen validation set z�. The
prior bounds on the material properties were 610% of the typical
values for aluminum 6082; E¼ 71 GPa, � ¼ 0:33, and
q¼ 2770 kg/m3.

6.1 Bayesian History Matching. Bayesian history matching
is a methodology for calibrating statistical models of the form

zjðxÞ ¼ gjðx; hÞ þ dj þ ej (15)

where zjðxÞ is the jth observational output given inputs x, gjðx; hÞ
is the jth simulator given x and parameters h. The model discrep-
ancy and observational uncertainty are d and e, respectively. The
model assumes that the simulator, model discrepancy and obser-
vational uncertainty are independent and does not seek to define
the model discrepancy’s functional form.

The “likelihood free” technique utilizes an implausibility met-
ric to iteratively discard parts of the input space that were unlikely
to have generated the observational data, given a set of uncertain-
ties, defined as

Ij x; hð Þ ¼
jzj xð Þ �E GPj x; hð Þ

� �
j

Vo;j þ Vm;j þ Vc;j x; hð Þ
� �1=2

(16)

where Vo, Vm, and Vcðx; hÞ are variances associated with the
observational, model discrepancy and code uncertainties (the var-
iance of the Gaussian process (GP) emulator) and EðGPðx; hÞÞ is
the mean of the GP emulator. Due to the focus of this paper being
on the assessment of validation metrics the reader is referred to
Refs. [33] and [34] for a more detailed overview of BHM.

Once calibrated, the outputs from BHM can be used to infer the
functional form of the model discrepancy term. Here an impor-
tance sampling approach is implemented, whereby a second GP
model is inferred while marginalizing out the posterior parameter
distribution pðhjZÞ. Again, due to the scope of this paper the
reader is referred to Refs. [35] and [36] for a more detailed expla-
nation of the analysis. The result of this approach is that calibrated
and bias-corrected predictive distributions can be inferred across
the input space.

Fig. 8 Test setup of the representative five story building
structure

Fig. 9 BHM predictive outputs (x1;x2;x3) with inference of
model discrepancy via importance sampling trained GPs. The
shaded regions indicate 63r.
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The predictions from both the BHM and importance sampling
approach for the five story building structure are presented in
Figs. 9 and 10.

6.2 Validation of Output Predictions. The proposed valida-
tion metrics outlined in Secs. 3 and 4 were applied to the BHM
predictions shown in Figs. 9 and 10. It is noted that the normalized
mean squared error for each natural frequency prediction was
157.60, 0.07, 0.01, 0.01, and 0.12 respectively. This deterministic
metric would indicate that the mean predictions are adequate for
the second to fifth natural frequencies with large errors in the first
natural frequency (as visually intuitive from Figs. 9 and 10).

To analyze the predictions, further distance metrics were
applied. The f-divergence measures were all compared to kernel
density estimates (KDEs) of the observational data and calculated
via numerical integration, as presented in Fig. 11. The KL diver-
gence (where P is the observational data and Q the model predic-
tions, Fig. 11(a)), clearly captures the large discrepancy for the
first natural frequency predictions at 0.1 and 0.2 kg. In general,
the first natural frequency predictions all produce relatively large
(> 2) KL divergences. Apart from the third natural frequency pre-
dictions at 0.2 and 0.3 kg, the remaining predictions all have a KL
divergence< 1.5, with the majority being below 1, informing
relatively “good” agreement.

The Hellinger and total variation distances (Figs. 11(b) and
11(c)) also confirm that the first natural frequency predictions are
“far” from the observational data, especially at 0.1 and 0.2 kg.
Both of these distances show very similar distances and relative
trends, e.g., that the fifth natural frequency is closest for the 0, 0.2,
0.4, and 0.5 kg masses, and far at 0.1 kg due the slight offset in
mean. A difference between these two distances occurs for the
first natural frequency at 0.1 kg, where total variation quantifies a
larger discrepancy.

The IPMs are displayed in Fig. 12. The Kolmogorov distance
(Fig. 12(a)) and Area Metric (Fig. 12(c)) are compared to empiri-
cal CDFs of the observations. Both of these metrics indicate that
the first natural frequency predictions at 0.1 and 0.2 kg are the fur-
thest away from the observations, with the Area Metric also stat-
ing that the 0.4 kg prediction is close. In addition, both of these
metrics better capture that the second natural frequency predic-
tions at 0.1 kg and 0.2 kg have large discrepancies, due to an offset
in the predictive mean. A challenge here is that the Area Metric
magnitudes are all relatively low, at an order of magnitude of
10�3 Hz. This is caused by the close spacing of the observational
points, leading to small areas between the empirical and predicted
CDFs. At these magnitudes of frequency, the Area Metric would

Fig. 10 BHM predictive outputs (x4;x5) with inference of
model discrepancy via importance sampling trained GPs. The
shaded regions indicate 63r.

Fig. 11 f-divergence measures applied to the BHM and impor-
tance sampling predictions. Panel (a), (b), and (c) are the KL
divergence, total variation, and Hellinger distance, when com-
pared to KDEs of the observational data. These measures have
been calculated via numerical integration.
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therefore indicate that all predictions, even for the first natural fre-
quency, are “good,” and may lead to the acceptance of an inad-
equate model. The biased MMD distance (Fig. 12(b)) is utilized in
this case study and calculated from the average distance when 100
repeats of ten samples are drawn from the predictive distribution.
In agreement with the Area Metric, the MMD distances follow a
similar pattern for the first natural frequency, with it stating that
the prediction at 0.4 kg is close.

Finally, a key benefit of the MMD distance over the other dis-
tances/divergences is the ability to interrogate the differences

between distributions via the witness function. This provides a
potentially useful and powerful diagnostic tool for determining
where modeling improvements may be made. Figure 13 presents a
comparison of the simulator and observational distributions
against the witness function, demonstrating its diagnostic capabil-
ities. Even though the fifth natural frequency has been
“adequately” captured by the simulator, the witness function
clearly highlights several differences. The 0, 0.2, and 0.3 kg pre-
dictions all over-estimate the variance with slight shifts in the
mean values, indicated by the witness function being negative
about the mean and asymmetric. These results can be interpreted
as conservative, given the relatively small number of observa-
tions. For the 0.1 kg case, it can clearly be seen that there is an off-
set in the mean value, although the observation distribution is still
within the majority of the simulators probability mass. The 0.4 kg
case shows an offset between the two distributions. Furthermore,
although the simulator appears to have almost matched the obser-
vational data for the 0.5 kg case, the witness function has high-
lighted that the simulator has a higher prediction of the mean with
a larger variance than the observational distribution. This high-
lights the witness function’s use in quantifying where the differen-
ces in probability mass occur, potentially aiding the correction of
the simulator or leading an improved experiential test strategy.

7 Conclusion

Understanding and quantifying uncertainties in simulator pre-
dictions requires the development of validation metrics that can
assess the differences between the simulator and observational
distributions. This paper has categorized existing validation met-
rics within two families of statistical distances/divergences,
namely f-divergences—KL divergence, Hellinger distance, total
variation distance—and IPMs—total variation distance, Kolmo-
gorov distance, MMD distance, and the Area Metric. This has

Fig. 12 IPM statistical distances applied to the BHM and
importance sampling predictions. Panel (a) and (c) are the Kol-
mogorov distance and Area Metric when compared to empirical
ten point observational CDFs. Panel (b) is the averaged MMD
distance over 100 repeats of ten samples from the predictive
distribution. A radial basis kernel where r is inferred from the
median heuristic is implemented.

Fig. 13 Witness function (f �(t)) for the fifth natural frequency
compared with the Gaussian simulator distributions and KDEs
of the observational data. The witness functions are con-
structed from a radial basis kernels where r is inferred from the
median heuristic.
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shown that a wider variety of statistical distances/divergences
exist that could be implemented as potential validation metrics.

It is noted that these measures all rely on multiple samples of
the observations, which may be challenging to obtain in real-
world applications; although this paper assumes enough samples
are obtainable. For this reason, understanding the convergence
rates of nonparametric estimators of these measures should be
investigated as further research. Moreover, the distance/diver-
gence values can be difficult to objectively interpret. As the meas-
ures outlined in this paper have an equivalent frequentist
hypothesis test, these should be investigated such that their per-
formances as validation metrics can be further scrutinized.

The measures discussed in this paper have been compared both
in numerical examples and an experimental case study. The
numerical case studies have led to the conclusion that the Kolmo-
gorov distance is often insensitive to differences outside of the
central probability mass, making it impractical for some valida-
tion contexts. The KL divergence will often be difficult to inter-
pret, but can provide useful information in diagnosing problems
where significant differences (or impossibilities) in the probability
mass are present. Both total variation and Hellinger distances
show a good level of sensitivity to differences in distributions.
The MMD distances produced similar distances to the total varia-
tion and Hellinger distance for this numerical example, meaning
that it could be an informative and stable method for providing a
nonparametric distance between samples. Finally, the Area Metric
is useful in that it quantifies the distance in terms the quantity of
interest units. Despite this, the Area Metric can be hard to objec-
tively compare. Furthermore, it appears to fail to distinguish
between under- and over-estimation of the variance for the case
studies provided. It is therefore suggested that for most validation
applications, a combination of the KL divergence, Area Metric,
and either the total variation, Hellinger, or MMD distances would
be effective in assessing the simulator’s adequacy.

The experimental case study again confirmed the difficulties in
interpreting the KL divergence, with it being most useful in situa-
tion where large differences are present. Both the total variation
and Hellinger distances provide similar quantifications of the dif-
ferences between distributions and are able to quantify a range of
dissimilarities between two distribution’s probability mass. In
addition, the total variation and Hellinger distances, along with
the Kolmogorov distance, are standardized across problems due to
being bounded [0 1]. The Area Metric produced very small mag-
nitudes in distance between the simulator predictions and the
observations, which could lead to miss-identifying inadequacy.
Furthermore, the MMD distance provides both a nonparametric
method for assessing distance but also the ability to interrogate
the differences in probability mass using the witness function.
This can be a key tool in diagnosing areas of difference as part of
a wider validation strategy.
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