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The application of machine learning within Structural Health Monitoring (SHM) has been
widely successful in a variety of applications. However, most techniques are built upon the
assumption that both training and test data were drawn from the same underlying distri-
bution. This fact means that unless test data were obtained from the same system in the
same operating conditions, the machine learning inferences from the training data will
not provide accurate predictions when applied to the test data. Therefore, to train a robust
predictor conventionally, new training data and labels must be recollected for every new
structure considered, which is significantly expensive and often impossible in an SHM con-
text. Transfer learning, in the form of domain adaptation, offers a novel solution to these
problems by providing a method for mapping feature and label distributions for different
structures, labelled source and unlabelled target structures, onto the same space. As a
result, classifiers trained on a labelled structure in the source domain will generalise to a
different unlabelled target structure. Furthermore, a holistic discussion of contexts in
which domain adaptation is applicable are discussed, specifically for population-based
SHM. Three domain adaptation techniques are demonstrated on four case studies provid-
ing new frameworks for approaching the problem of SHM.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Data-driven approaches to Structural Health Monitoring (SHM), specifically those utilising machine learning techniques,
have achieved significant successes in a variety of applications [1–4]. The majority of these successes have involved super-
vised learning methods, meaning they require labelled training and test data. Moreover, whether supervised, unsupervised
or semi-supervised, these techniques are developed on the assumption that both the training and test data are drawn from
the same underlying distribution. This constraint typically means that machine learning approaches are specialised for a par-
ticular structure, application, and set of damage scenarios. Training and test data distributions for real-world operational
structures may differ for several reasons: particular damage states may have only occurred in one of the two data sets, class
distributions may vary over time due to operational conditions that may not be captured in the training set, training data
may have been generated from a different structure from the test data etc. These issues prevent machine learning algorithms
from generalising, leading to poor predictive performance. These problems hinder the algorithms in industry, as current
approaches would require the collection of new labelled training data and the rebuilding of models for each individual struc-
ture, operational conditions and damage states, which is expensive and impractical for most scenarios. Supervised learning
particularly suffers from these problems, as it requires labelled damage-state data for all considered damage scenarios,
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which is often infeasible to obtain, nor is it economically viable for operational structures. These difficulties highlight a gen-
eral desire to utilise information across a variety of structures and scenarios in order to produce machine learning
approaches that generalise well.

From this discussion it is clear that a significant progressive step in SHM is developing an approach where information
from across a population of structures can be used to perform inferences that generalise for the complete population (even
if the number in the population is only two). This category of approach to SHM is defined as population-based SHM [5]. For
example, in the case of a wind farm, there may be a variety of damage-labelled data across different wind turbines in the
fleet, all subject to distinct operational conditions. It may be possible to have a specific wind turbine where labelled feature
data is obtainable for particular normal and damage state conditions of interest, here called the source domain data. The
operator may also have a different wind turbine of the same model with a large number of unlabelled data, called the target
domain data. The data from these two turbines will have differences in their underlying distributions; these may come from
the existence of inevitable manufacturing and assembling differences, or differing operational conditions due to their loca-
tion within the farm. The question is, can the information from the labelled source domain data be used to create a method
that generalises to the unlabelled target domain? This question motivates the work outlined within this paper.

It is also helpful at this point to define specific types of populations that exist within a population-based SHM context. The
first main category are homogeneous populations. These form the simplest set of structures, in which each member of the
population is nominally identical to the others, e.g. in terms of geometry, materials and topology. The differences in data
distributions between members of this population type come from tolerances in manufacturing, local variations in material
properties and small changes in operational conditions etc.; and therefore includes the example of the same model wind tur-
bine within a fleet. The second category are heterogeneous populations, where differences in e.g., a combination of geometry,
materials and topology, lead to significant differences in the data distributions, and potentially in the label classes. This
group can be further divided into heterogeneous populations that are topologically similar or dissimilar, leading to consis-
tency or inconsistency in labels related to location (stage two of Rytter’s Hierarchy1 [6]). An example of the first sub-division
would be a population of three-span bridges, where one may have an overall span of 100m and another 50m. For the second
subcategory, an example would be a five-span and a ten-span bridge, which poses a greater challenge for population-based
SHM. It is clear that homogeneous populations are the simplest set of population type and therefore methods that apply to
heterogeneous populations will apply to these scenarios.

Transfer learning, a subfield of machine learning, aims to improve a learner from one domain by transferring knowledge
from a related domain [7]. Within transfer learning, there are a variety of approaches that differ in their aims and assump-
tions. Domain adaptation is a particular branch of transfer learning, where the focus is in reducing the distance between dif-
fering data distributions from source and target domains. This approach to transfer learning is therefore applicable to the
SHM scenarios outlined above, namely when there is labelled data for a particular structure or operational environment
and a set of unlabelled data for a different structure or operational environment. For these reasons, domain adaptation is
investigated in this paper.

To demonstrate the novelty of this work, a review is provided of existing examples of transfer learning within the SHM
literature. A majority of these studies have been about using transfer learning to improve image classification using deep
convolutional neural networks. For example, Dorafshan et al. utilised the transfer learning mode within the AlexNet archi-
tecture for classifying cracks in images. A fine tuning approach was used to increase classification performance when com-
pared to utilising the deep convolutional neural network as a conventional classifier [8]. Crack detection via image
classification was also performed using a combination of deep convolutional neural networks and fine tuning transfer learn-
ing by Gao et al. [9]. In addition, Jang et al. implemented transfer learning to repurpose the GoogLeNet deep neural network
architecture for automated crack detection in images for concrete structures [10]. These examples differ from the work pro-
vided here, as transfer learning within the convolutional neural network setting typically involves tuning the convolutional
layer parameters from a network initially trained on a well-defined source domain.

Outside of deep learning, Chakraborty et al. derived a translated inductive transfer learning-based classifier, applying it to
a fatigue damage case study [11]. The authors consider an example where sufficient labelled training data is only available
from one of four sensors placed on an aluminium structure. Not only does this study use a different domain adaptation algo-
rithm, it also does not consider the wider applications of domain adaptation within SHM, focusing on a sensor coverage
problem. Finally, in the related field of non-destructive evaluation Ye et al. applied three domain adaptation methods in gen-
erating a robust hammering echo analysis technique for assessing concrete structures [12]. The algorithms assessed in this
paper were transductive component analysis, geodesic flow kernel and maximum independence domain adaptation in com-
bination with a Support Vector Machine (SVM), where the first two were found to provide better classification accuracies.
These studies therefore do not provide a holistic discussion of contexts in which domain adaptation is applicable for
SHM, neither do they outline the specific domain adaptation methods utilised in the paper, namely Transfer Component
Analysis (TCA), Joint Domain Adaption (JDA) and Adaptation Regularization based Transfer Learning (ARTL).

The outline of this paper is as follows. Domain adaptation is mathematically introduced in Section 2 before specific algo-
rithms are outlined, namely TCA, JDA and ARTL. The two proceeding sections discuss the applicability of these methods for
two contexts with heterogeneous populations; nominally similar in topology, in Section 3, and where the topology is
1 Rytter’s Hierarchy states the problems within SHM in order of difficulty: detection, location, type, extent and prognosis.
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considered different, in Section 4. Within each of these sections, two case studies are presented highlighting the potential of
domain adaptation for addressing current issues in SHM. Finally, conclusions are presented.

2. Domain adaptation

Before defining transfer learning it is important to define two key objects: a domain and a task [7]:

� A domain D ¼ X ; p Xð Þf g consists of a feature space X and a marginal probability distribution p Xð Þ, where X ¼ xif gNi¼1 2 X
i.e. a finite sample set from X .

� A task for a given domain is defined as T ¼ Y; f �ð Þf g, where Y is a label space and f �ð Þ is a predictive function (or can be
consider as the conditional distribution p yjXð Þ) learnt from a training data set xi; yif gNi¼1, where y 2 Y.

Using these definitions, transfer learning for a single source and target domain case can be defined as:

� Transfer learning: Given a source domain Ds and task T s and target domain Dt and task T t , it is the process of improving
the target predictive function f t �ð Þ in T t using the knowledge learnt from Ds and T s, assuming Ds – Dt and/or T s – T t .

Transfer learning methods are then based on whether X ; p Xð Þ; Y or p yjXð Þ are consistent across the source and target [7].
Domain adaptation is one branch of transfer learning defined as:

� Domain adaptation: Given a source domain Ds and task T s and target domain Dt and task T t , it is the process of improving
the target predictive function f t �ð Þ in T t using the knowledge learnt from Ds and T s, assuming X s ¼ X t and Ys ¼ Yt , but
that p Xsð Þ – p Xtð Þ and p YsjXsð Þ – p Yt jXtð Þ.

Domain adaptation is appropriate for scenarios in which the classifier will not generalise across the source and target
domains due to differences in these distributions. As a result, methods for performing domain adaptation focus on minimis-
ing the distances (or divergence) between these distributions through some mapping / �ð Þ, such that p / Xsð Þð Þ � p / Xtð Þð Þ and
p Ysj / Xsð Þð Þ � p Yt j/ Xtð Þð Þ. This requires the definition of a distance between two probability distributions; in transfer learn-
ing the Kullback-Leibler divergence [13], Jenson-Shannon divergence [14], Hellinger distance [15] and Maximum Mean Dis-
crepancy (MMD) distance [16] have all been used in minimising differences between the source and target distributions.

In a population-based SHM context, domain adaptation is appropriate for scenarios in which the feature space and label
space match i.e. X are both modal vectors relating to the same natural frequencies, and Y refer to the same location, type and
extent of damage (although this is discussed further in Section 4). This fact makes domain adaptation most applicable for the
homogeneous population context and for heterogeneous populations where both features and labels can be considered con-
sistent i.e. when structures are topologically similar; although, as outlined in Section 4, it will be seen that these methods
may be applied more broadly to more general heterogeneous populations as well.

In the following subsections, three domain adaptation methods are outlined, TCA, JDA and ARTL. These three techniques
differ in their assumptions about consistencies between the source and target, with ARTL also seeking to align a hyperplane-
based classifier in the transformed space.

Finally, before proceeding to define the methods, two classification metrics are outlined with which predictive perfor-
mance of the domain adaptation techniques will be assessed. These metrics are constructed from the number of true pos-
itives (TP), false positives (FP), true negatives (TN) and false negatives (FN). The first metric is accuracy defined as,
Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: ð1Þ
The second metric, the macro F1-metric is formed from the precision P, and recall R, for each class c 2 Y,
Pc ¼
TPc

TPc þ FPc
ð2Þ

Rc ¼
TPc

TPc þ FNc
ð3Þ
and from these quantities, a class F1-score and macro F1-score are formed for each class c 2 Y,
F1;c ¼
2PcRc

Pc þ Rc
ð4Þ

F1macro ¼
1
C

X
c2Y

F1;c ð5Þ
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where the macro-averaged F1-metric equally weights the score for each class regardless of the proportion of data obtained
within each class. This metric therefore provides a better reflection of classification performance when a small number of
data points are in one class relative to another, as it weights all classes evenly.

2.1. Transfer component analysis

TCA assumes p Xsð Þ – p Xtð Þ but that p YsjXsð Þ ¼ p Yt jXtð Þ i.e. the marginal distributions are very different. The method seeks
to learn a nonlinear transform from the feature space to a Reproducing Kernel Hilbert Space (RKHS) i.e. / : X ! H, where
p / Xsð Þð Þ � p / Xtð Þð Þ and p Ysj/ Xsð Þð Þ ¼ p Yt j/ Xtð Þð Þ [17]. The approach utilises the (squared) MMD distance as a criterion —
the difference between two empirical means through a nonlinear mapping in a RKHS — where a kernel
k xi; xj
� �

¼ / xið ÞT/ xj
� �

is defined, leading to,
Dist p X
�
s

� �
; p X

�
t

� �� �
¼ 1

Ns

XNs

i¼1

/ xs;i
� �

� 1
Nt

XNt

i¼1

/ xt;i
� ������

�����
�����

�����
2

H

¼ tr KMð Þ ð6Þ
where ~X are the transformed features, K ¼ / Xð ÞT/ Xð Þ 2 R NsþNtð Þ� NsþNtð Þ given X ¼ Xs [ Xt 2 R NsþNtð Þ�D where D is the dimension
of the features, and M is the MMD matrix as defined by,
M i; jð Þ ¼

1
N2
s
; xi; xj 2 Xs

1
N2
t
; xi; xj 2 Xt

�1
NsNt

; otherwise:

8>><
>>: ð7Þ
Utilising the low-rank empirical kernel embedding K
�
¼ KWWTK [18], the distance can be rewritten as,
Dist p X
�
s

� �
; p X

�
t

� �� �
¼ tr WTKMKW

� �
ð8Þ
where W 2 R NsþNtð Þ�k are the weights which perform a reduction and transformation.
This problem can now be formed in an optimisation framework, where by optimising the weights W, the marginal dis-

tributions are brought together in the transformed space. The problem is performed under a square Frobenius-norm regu-
larisation constraint to control the complexity of W, and subject to kernel Principle Component Analysis (PCA) such that the
trivial solution W ¼ 0 is avoided as shown in the objective,
min
WTKHKW¼I

¼ tr WTKMKW
� �

þ ltr WTW
� �

ð9Þ
where l is a regularisation trade-off parameter, H ¼ I� 1= Ns þ Ntð Þ1 is a centring matrix, I is an identify matrix and 1 a
matrix of ones. Using a Lagrangian approach the optimisation is converted to an eigenvalue problem which can be solved
for W where the eigenvectors required for mapping correspond to the k smallest eigenvalues of,
KMK þ lIð ÞW ¼ KHKW/: ð10Þ
Finally the k-dimensional transformed feature space is calculated by Z ¼ KW 2 R NsþNtð Þ�k. Once obtained, a classifier can
be trained in the transformed space using the source data and subsequently implemented on the target data.

2.2. Joint domain adaptation

JDA assumes p Ys;Xsð Þ – p Yt ;Xtð Þ i.e. the joint distributions are very different. The method seeks to learn a nonlinear trans-
form from the feature space to an RKHS i.e. / : X ! H, where p / Xsð Þð Þ � p / Xtð Þð Þ and p Ysj/ Xsð Þð Þ � p Yt j/ Xtð Þð Þ at the same
time — given a joint distribution, which is the product of the marginal and conditional distributions [19].

However, the conditional in the target domain p Yt jXtð Þ cannot be modelled directly as there are no labelled target data. To
overcome this problem, JDA utilises a pseudo-labelling approach, whereby a classifier trained on the source data is applied to

the target data in order to provide estimates of the labels Ŷ t — a naive form of semi-supervised learning. In addition, the
posterior probabilities p YjXð Þ are difficult to obtain, meaning that JDA utilises the class-conditional distributions p XsjYsð Þ
and p Xt jYtð Þ. By using the true source labels and pseudo target labels, JDA matches the conditional distribution for each class
p XsjYs ¼ cð Þ and p Xt jYt ¼ cð Þ where c 2 1; . . . ;Cf g in the label set Y.

The MMD between these class-conditional distributions (using the empirical kernel embedding) can be formed as,
Dist p X
�
s

� �
; p X

�
t

� �� �
þ Dist p YsjX

�
s

� �
; p Yt jX

�
t

� �� �
� tr WTKMcKW

� �
ð11Þ
noting that if c ¼ 0 then this formulation becomes TCA and therefore if c 2 0;1; . . . ;Cf g, both the marginal and class-
conditionals distances (and hence an approximation of the joint) are minimised. As a result, the MMD matrix becomes,



P. Gardner et al. /Mechanical Systems and Signal Processing 138 (2020) 106550 5
Mc i; jð Þ ¼

1
N cð Þ
s N cð Þ

s
; xi; xj 2 D cð Þ

s

1
N cð Þ
t N cð Þ

t

; xi; xj 2 D cð Þ
t

�1
N cð Þ
s N cð Þ

t

;
xi 2 D cð Þ

s xj 2 D cð Þ
t

xj 2 D cð Þ
s xi 2 D cð Þ

t

(

0; otherwise

8>>>>>>>>><
>>>>>>>>>:

ð12Þ
where D cð Þ
s ¼ xi : xi 2 Ds ^ y xið Þ ¼ cf g are the instances that belong in class c given the true source label y xið Þ of xi and

N cð Þ
s ¼ jD cð Þ

s j; and D cð Þ
t ¼ xi : xi 2 Dt ^ ŷ xið Þ ¼ cf g are the instances that belong in class c given the pseudo-target label ŷ xið Þ

of xi and N cð Þ
t ¼ jD cð Þ

t j (where ^ is the logical AND symbol). Following the same formulation as TCA the optimisation problem
(subject to the regularisation constraint and kernel PCA) again becomes an eigenvalue problem where the optimal W is
obtained from the eigenvectors corresponding to the k smallest eigenvalues from,
K
XC
c¼0

McK þ lI
 !

W ¼ KHKW/: ð13Þ
Due to the pseudo-labelling of the target features, [19] recommends running several iterations of the optimisation to find the
optimal W. Again the k-dimensional transformed feature space is calculated by Z ¼ KW 2 R NsþNtð Þ�k, and a classifier trained
on the transformed source data can be applied to the transformed target data.

2.3. Adaptation regularisation-based transfer learning

ARTL incorporates a hyperplane-based classifier within the domain adaptation procedure, aiming to boost classifica-
tion performance. The method makes the same assumptions as JDA, i.e. p Ys;Xsð Þ – p Yt;Xtð Þ i.e. the joint distributions are
very different; however, it also considers the discriminative directions between the domains via manifold regularisation
[20].

The general framework of ARTL is constructed from a structural risk minimisation principle and regularisation theory. The
optimisation objective function,
f ¼ min
f2H

XN
i¼1

L f xið Þ; yið Þ þ rjjf jj2K þ lDist p Ys;/ Xsð Þð Þ; p Ys;/ Xsð Þð ÞÞ þ cMR p / Xsð Þð Þð Þ; p / Xtð Þð Þð ð14Þ
is comprised of three components: minimisation of structural risk on the labelled source domain data, minimisation of the
differences between the joint distributions in the source and target domains, and maximising the manifold consistency
underlying the marginal distributions in the source and target domain.

This equation is optimised to find the predictive function f ¼ wT/ xð Þ, where w are classifier parameters. The first two
terms in Eq. (14) relate to the structural risk, where L f xið Þ; yið Þ is a loss function that quantifies the fitness of f in predicting

the training labels. This loss function is subject to a squared-norm regularisation constraint in H;rjjf jj2K where r is the
shrinkage regularisation parameter.

The second part of Eq. (14) performs joint domain adaptation, i.e. minimising Dist p Ys;/ Xsð Þð Þ; p Ys;/ Xsð Þð Þð Þ. This structure
forms similar equations to Eq. (11), however the distances are now in reference to the classifier such that,
Dist p Ys;/ Xsð Þð Þ; p Ys;/ Xsð Þð Þð Þ � tr aTKMcKa
� �

ð15Þ
where Mc is as defined in Eq. (12) using c 2 0;1; . . . ;Cf g. However, unlike TCA and JDA, a are classifier parameters such that
w ¼

P
ai/ xið Þ and f xð Þ ¼

P
aiK xi; xð Þ (using the representer theorem [21]). As with TCA and JDA, a regularisation constraint

is incorporated, where l is the regularisation parameter. Pseudo-labelling is also utilised, where the predictive function is
used to classify the unlabelled target data, where these are used to update Mc iteratively.

The third aspect of ARTL is manifold regularisation governed by c. This tries to make use of the unlabelled target
domain data via the marginal distributions in the source and target domain. The assumption here is that the conditional
distribution of two points in the source and target domains will be similar if those points are close in terms of the
intrinsic geometry of the marginal distributions, known as the manifold assumption [22]. This leads to the following man-
ifold regularisation term,
MR p / Xsð Þð Þ; p / Xtð Þð Þð Þ ¼
PNsþNt

i;j¼1
f xið Þ � f xj

� �� �2Wi;j ¼
PNsþNt

i;j¼1
f xið ÞLi;jf xj

� �
ð16Þ
where W is the graph affinity matrix defined as,
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W i; jð Þ ¼ cos xi; xj
� �

; xi 2 N p xj
� �

_ xj 2 N p xið Þ
0; otherwise

(
ð17Þ
where N p xið Þ is the set of p-nearest neighbours of points xi and L is the normalised graph Laplacian matrix,
L ¼ I� D�1=2WD�1=2 ð18Þ
where Di;i ¼
PN

j¼1Wi;j. Manifold regularisation is then enforced in terms of a,
MR p / Xsð Þð Þ;p / Xtð Þð Þð Þ ¼ tr aTKLKa
� �

ð19Þ
By substituting a machine learning loss function into Eq. (14), an adaptive prediction function f can be inferred. The authors
in [20] demonstrate ARTL for a hinge-loss and least-squares cost function. Following [20], the objective function for a reg-
ularised least-squares approach becomes,
a ¼ min
a2RN

jj y � aTK
� �

Ejj2F þ tr raTKaþ aTK lMc þ cLð ÞKa
� �

ð20Þ
where E is a diagonal label indicator matrix, i.e. Ei;i ¼ 1 if xi 2 Ds and zero otherwise, such that only the labelled source
domain is considered in the loss function. The solution to Eq. (20) is subsequently formed by setting the derivative of the
objective function to zero,
a ¼ Eþ lMc þ cLð ÞK þ rIð Þ�1EYT: ð21Þ
As previously stated, the adaptive classifier can then be formed from f xð Þ ¼
P

aiK xi; xð Þ.

3. Population-based SHM case studies

Two case studies are presented in this section demonstrating the applicability of domain adaptation, specifically TCA, JDA
and ARTL, for the subclass of heterogeneous populationswhere two structures are defined as similar topologically (in this case
given their lumped-mass structure). These studies address two specific problems in SHM. The first problem deals with multi-
site damage location, showing the method’s applicability to multi-class classification contexts. Here, two numerical three-
storey structures are utilised in generating data, where the structures differ in geometric dimensions and material proper-
ties. The second case study considers a scenario in which a numerical simulation is used as the source domain for a two-class
damage detection problem, where the target domain is data from an experimental structure. This presents the effectiveness
of the approaches in generating damage state labels when it would otherwise have been infeasible or not economically
viable to obtain.

3.1. Representative three storey building structure

In both the scenarios considered here, the populations are a collection of three-storey shear structures, where the numer-
ical structures are as depicted in Fig. 1, i.e. a lumped-mass model of a shear structure in bending. For each numerical sim-
ulation, the three masses mif g3i¼1 are calculated from a given rectangular volume v ¼ lmwm tm where the density q at each
mass is considered different and lm; wm; tm are the length, width and thickness of the rectangular volume. Similarly the three

stiffness coefficients kif g3i¼1 are composed from the tip stiffness of four cantilever beams in parallel i.e. 4kb ¼ 4 3EI=l3b
� �

,

where E is the elastic modulus, I the second moment of area and l the beam length. Each stiffness coefficient is constructed

from a different E. Additionally, damping coefficients cif g3i¼1 are given for each structure but are not derived from a physical
model.

For each case study, the damage scenario under consideration is an open crack. Specifically, a crack of length lcr is intro-
duced into one of the four beams at a particular degree-of-freedom. For example if the crack is located between the fixed
support and first mass then k1 ¼ 3kb þ kd; where kd is the tip stiffness of a cantilever beam with a crack length lcr at location
lloc along the length of the beam. In this paper the stiffness reduction due to an open crack in a cantilever beam is modelled as
proposed by Christides and Barr in [23]. This model adopts a function of elastic modulus and second moment of area across
the length of the beam x given by,
EI xð Þ ¼ EI0
1þ C exp �2ajx� llocj=tbð Þ ð22Þ
where I0 is the second moment of the undamaged beam, tb the thickness of the beam and a a coefficient experimentally
defined by Christides and Barr as 0:667. The constant C ¼ I0 � Icð Þ=Ic is a function of the undamaged I0 and damaged second
moments of area Ic , which for a rectangular beam are I0 ¼ wbt3b

� �
=12 and Ic ¼ wb � lcrð Þt3b=12. The damaged tip stiffness kd is

obtained from kd ¼ �F=ytip where F is a given force and ytip is the tip deflection from numerically integrating the Euler-
Bernoulli bending beam equation,



Fig. 1. Schematic of the three degree-of-freedom shear structure: panel (a) is of the full system and panel (b) depicts the cantilever beam component where
kif g3i¼1 ¼ 4kb i.e. the stiffness coefficients in (a) are generated from four times the tip bending stiffness in (b).
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¼ �M xð Þ
EI xð Þ ð23Þ
The damped natural frequencies xd;i

	 
3
i¼1 and damping ratios fif g3i¼1 are subsequently calculated given these mass, damp-

ing and stiffness values, and used as features in the following classification tasks.
3.2. Multi-class case study

The first case study considers a multi-class classification problem between two different three-storey building structures.
The SHM scenario is a three-class detection and location problem, i.e. for each system, an undamaged class, labelled ‘1’, and
two damaged classes at different locations, labelled ‘2’ and ‘3’, exist. It is assumed that these labels are known for the source
structure and unknown for the target structure. Domain adaptation is implemented in order to build a classifier using the
labelled information in the source domain that holds for the target domain. In order to demonstrate the effectiveness of
TCA and JDA, a k-Nearest Neighbour (k-NN) classifier is used; as if the learnt mapping is accurate, the source and target dis-
tributions should coincide, and therefore be close in Euclidean distance. ARTL on the other hand, is a reconstruction of a
hyperplane-based classifier, where here the regularised least-squares form is implemented.

The two damage classes refer to an open crack located at the first and third degrees-of-freedom, i.e. k1 and k3 respectively.
The crack is considered to be at the midpoint along the length of one of the four beams at the particular degree-of-freedom.
The crack lengths are defined as 50% of the beam width for each structure, such that the damage labels are comparable
between the two structures.

The source and target structures are steel and aluminium three-storey building structures, where the geometric dimen-
sions are different. The population is thus heterogeneous, the structures are not ‘nominally identical’; however, they are
topologically similar, in that a simple change of material or geometry parameters transforms one into the other. Interest-
ingly, this shows that ‘topologically equivalent’ means close to the bounds between homogeneous populations and hetero-
geneous populations. The material and geometric properties for the source and target structures are displayed in Table 1. The

elastic modulus, density and damping coefficients are set as probability distributions such that mi; ci; kif g3i¼1 are obtained
from a random draw from these distributions.

Following the approach outlined in Section 3.1, the damped natural frequencies and damping ratios are obtained for each
of the three classes. Consequently, these quantities are utilised as features i.e. Xs 2 RNs�6 and Xt 2 RNt�6. In order to visualise
these high-dimensional feature spaces two-dimensional comparisons are presented. Fig. 2 demonstrates a comparison of the
first (x1) and second (x2) natural frequencies for the source and target domain showing the differences in magnitude
between the source and target domain. This depiction forms part of Figs. 3 and 4 (i.e. second row from the top and first col-
umn), where each quadrant in Figs. 3 and 4 is a two-dimensional comparison between feature combinations, ordered natural
frequencies followed by damping ratios i.e. the bottom-left quadrant is the first natural frequency against the third damping
ratio. (It is noted that this format for displaying features spaces in figures is used throughout this paper).

For this case study, the training data used to infer the mappings in the domain adaptation methods were 250 repeats for
each class from the labelled source domain and 100 repeats for each class from the unlabelled target domain i.e. Ns ¼ 750
and Nt ¼ 300. The test data were comprised of an additional 250 repeats for each class from the target domain (denoted by



Table 1
Properties of the source and target structures for the multi-class case study.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 300; 40; 8f g 160; 25; 6f g
Mass geometry, lm; wm; tmf g mm 400; 400; 40f g 300; 250; 25f g
Crack geometry, lcr ; llocf g mm 20:0; 150f g 12:5; 80f g
Elastic modulus, E GPa N 210;1� 10�9

� �
N 71;1� 10�10
� �

Density, q kg=m3 N 7800;50ð Þ N 2700;10ð Þ
Damping coefficient, c Ns=m G 8;0:8ð Þ G 50;0:1ð Þ

Fig. 2. Comparison of the first two dimensions,x1 andx2, for the source (left) and target (right) domain features for the multi-class case study. The training
and testing data for the target domain are denoted by þð Þ and �ð Þ respectively.

Fig. 3. Source domain features for the multi-class case study (where natural frequencies are in Hz).
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(�) in Fig. 4), i.e. Ntest ¼ 750. These figures demonstrate the differences between both domains, not only in absolute values
but also in the size and scaling. To demonstrate and motivate the need for domain adaptation in this example, a k-NN clas-
sifier (using Euclidean distance and k ¼ 2) was trained on the source domain data and applied to the unlabelled training and
testing target domain data (where the features were normalised to the source domain for computational reasons). As



Fig. 4. Target domain features for the multi-class case study (where natural frequencies are in Hz). The training and testing data are denoted by þð Þ and �ð Þ
respectively.
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expected, the k-NN classifier without domain adaptation, fails to correctly label the data for both scenarios as demonstrated
by macro F1-scores and accuracies of 0.167 and 33.3% for both the training and testing target domain.
3.2.1. Domain adaptation
The three domain adaptation methods were applied to the multi-class classification data in order to infer a general clas-

sifier for both the source and target domains. Cross-validation was performed, using the macro F1-score for TCA and JDA, and
the regularised square loss for ARTL as the cost function. Using a k-fold approach, with ten folds, the number of components
and regularisation parameters were identified (this involves partitioning the data into a number of training and validation
data sets, where the parameters with the best average metric over the data sets are selected). For each method, a linear ker-
nel was utilised.

Cross-validation identified four components and l ¼ 0:5 for TCA. Fig. 5 presents a visualisation of the learnt mapping
where it can be seen that the first component has not consistently mapped both the source and target domains. This result
is reflected in Fig. 6, where the marginal distributions for each component are presented. Given the aim of TCA, it is expected
that the source and target domain marginal distributions should be close; however, this is not the case for the first compo-
nent Z1.

JDA was implemented with ten iterations and a k-NN classifier for determining pseudo labels (in order to maintain a
consistent comparison). Cross-validation identified five components and l ¼ 1 for JDA. A visualisation of the mappings is
presented in Fig. 7, showing a similar problem in the first component as in TCA. Fig. 8 displays the marginal and class-
conditional distributions for each component. Visually, it can be seen that the second, fourth and fifth components have mar-
ginal and class-conditional distributions that match for the source and target domains. For the first and third components,
the target domain is approaching the source domain class-conditional distributions, explaining the behaviour in the mar-
ginal distributions. This has the unintended benefit of providing greater separability in the target domain.

ARTL is not visualised here as the a parameters are no longer weights solely associated with the transformed domain, as
in TCA and JDA, but are also affected by the classifier and manifold. Cross-validation, via minimising the regularised square
loss, selected one transfer component, r ¼ 0:1; l ¼ 0:001; c ¼ 0:1 and one nearest neighbour; ten iterations were also
implemented.

Classification results on the target domain for the multi-class case study are presented for the three approaches in Table 2;
where the source domain is used as training data for the classifier and both target domain data sets provide two testing sce-
narios. Several conclusions can be drawn from these results. Firstly, domain adaptation techniques are applicable to multi-
class scenarios, and therefore can be applied to the complete levels of Rytter’s hierarchy. Secondly, all three domain adap-
tation methods significantly outperform a k-NN classifier trained on the untransformed data. Additionally, JDA outperformed
TCA, highlighting that the assumption that p Ysj/ Xsð Þð Þ ¼ p Yt j/ Xtð Þð Þ does not hold, as expected for a heterogeneous popula-
tion. ARTL shows increased classification performance, demonstrating the benefit in aligning the classifier hyperplane via
manifold regularisation.



Fig. 5. A visualisation of the TCA-transformed components for the multi-class case study. The source domain and the training and testing data for the target
domain are denoted by �ð Þ; þð Þ and �ð Þ respectively.

Fig. 6. The marginal distributions for each TCA-transformed component for the multi-class case study. The source domain and target domain results are red
and blue respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Numerical-to-experimental domain adaptation

The second topologically-similar case study involves utilising a numerical simulation in generating labelled source
domain data for a two-class damage detection problem. In this scenario the unlabelled target domain data are from an exper-
imental structure, shown in Fig. 9. The case study highlights that domain adaptation offers a method for generating damage
state labels from numerical models that will apply to an operational structure. This capability has the potential to make
supervised learning approaches feasible across industrial applications where damage state data are unobtainable. These
techniques therefore offer a novel framework for utilising physics-based models in SHM, outside of traditional model updat-
ing [24].

The source domain data from the numerical structure is generated as outlined in Section 3.1. The simulated damage sce-
nario was a 17.5mm, midpoint crack in one of the four beams at the first degree-of-freedom, k1. The properties of the numer-
ical structure are outlined in Table 3; where the structure and crack geometries are equivalent to the experimental structure,
and the material properties are typical for aluminium 6082. Clearly, the numerical model is an oversimplification of the
experimental structure given that it only includes the bending stiffness of the beams, excluding shear stiffness, full geometric
features and modelling of the bolted joints etc. However, this highlights the applicability of using labels generated from
physics-based models in domain adaptation. Typically physics-based models will involve simplifications, as all physics can-
not generally be modelled, meaning that model-form errors will exist. In addition, it will often be impossible to validate the
physics-based model, as damage state data from the operational structure is unobtainable, as previously stated. 250 repeats
for each class were obtained from randomly sampling the properties in Table 3 i.e. Ns ¼ 500.

Target domain data were collected via modal testing using an electrodynamic shaker attached to the first floor of the
structure, as depicted in Fig. 9. The experimental structure, constructed from aluminium 6082, was tested in both the



Table 2
Classification results for the multi-class case study trained on the labelled source domain and applied to the unlabelled target domain.

Method k-NN TCA JDA ARTL

Mapping Training Accuracy 33.3% 85.3% 93.3% 99.7%
F1-score 0.167 0.843 0.931 0.997

Mapping Testing Accuracy 33.3% 84.8% 93.7% 99.6%
F1-score 0.167 0.838 0.936 0.996

Fig. 7. A visualisation of the JDA transformed components for the multi-class case study. The source domain and the training and testing data for the target
domain are denoted by �ð Þ; þð Þ and �ð Þ respectively.

Fig. 8. The marginal and class-conditional distributions for each JDA-transformed component for the multi-class case study. The source domain and target
domain results are red and blue respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 9. Experimental setup of the three-storey building structure.
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undamaged and damaged condition, where damage was introduced as a saw cut of 17.5mm on the midpoint of the front-
right beam of Fig. 9. The structure was excited with a 6553.6Hz broadband white-noise excitation containing 16384 spectral
lines (0.2Hz resolution) with a Hanning window on the force excitation and acceleration response. Five repeats were
obtained for each damage class i.e. Nt ¼ 10.

The features utilised in this scenario were the first three bending natural frequencies meaning Xs 2 RNs�3 and Xt 2 RNt�3,
where Fig. 10 displays the feature sets for the source and target domain. It can be clearly seen that the natural frequencies are
underestimated by the numerical model, by approximately a factor of two, due to the oversimplifications in the model. This
case presents a more challenging problem for the domain adaptation techniques, highlighting their applicability when
physics-based models have not been validated and may contain model-form errors, but capture to some extent the changes
in the features due to damage.

Classification, for all approaches but ARTL, was performed using a k-NN classifier for the same reason as the multi-class
case study, with k ¼ 3 and using Euclidean distance. ARTL was performed using the regularised least-squares cost function. A
k-NN classifier, trained on the (normalised) source domain and applied to these (normalised) target domain features pro-
duces a macro F1-score of 0.333 and an accuracy of 50%. This again highlights the need for performing domain adaptation.
3.3.1. Domain adaptation
All three domain adaptation techniques were applied in the numerical-to-experimental domain adaptation scenario.

Five-fold cross-validation was performed via maximising the macro F1-score for TCA and JDA, and minimising the regu-
larised squared loss for ARTL. A linear kernel was implemented for each approach.

A visualisation of the classification results for TCA, and the inferred transfer components, is presented in Fig. 11. Five-fold
cross-validation selected two transfer components and l ¼ 5� 10�4. The target domain data have been correctly classified
for all but a single data point, using a k-NN classifier trained on the source domain data and applied to the target domain
data. The marginal distributions in Fig. 12 visualises that the source and target domain components are close together.
Table 3
Properties of the source structure for the numerical-to-experimental
domain adaptation case study.

Property Unit Source

Beam geometry, lb; wb; tbf g mm 177:8; 25:4; 6:35f g
Mass geometry, lm; wm; tmf g mm 304:8; 254:0; 25:4f g
Crack geometry, lcr ; llocf g mm 17:5; 88:9f g
Elastic modulus, E GPa N 71;1� 10�9

� �
Density, q kg=m3 N 2700;50ð Þ
Damping coefficient, c Ns=m G 9;0:5ð Þ



Fig. 10. Source (left) and target (right) domain features for the numerical-to-experimental domain adaptation case study; showing both the undamaged
(red) and damaged (blue) labels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Classification results for TCA applied to the numerical-to-experimental domain adaptation case study; showing labelled source domain data �ð Þ, the
true labelled target domain data �ð Þ, and the predicted target domain labels (	).

Fig. 12. The marginal distributions for each TCA-transformed component for the numerical-to-experimental domain adaptation case study. The source
domain and target domain results are red and blue respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 13. Classification results for JDA applied to the numerical-to-experimental domain adaptation case study; showing labelled source domain data (�), the
true labelled target domain data �ð Þ, and the predicted target domain labels (	).
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The visualisation of the JDA classification results, shown in Fig. 13, again shows classification of all but one data point
successfully. In addition, JDA performs a better rotation of the source and target domain data such that the marginal and
class-conditional distributions are closer together, as demonstrated in Fig. 14. These results likely show that there is added
benefit in accounting for differences in the joint distributions between the source and target domains, although in terms of
classification accuracy, JDA produces the same results as TCA meaning that there is not enough data to judge conclusively.
Again five-fold cross-validation was applied, where two components and l ¼ 1 were selected.

ARTL parameters were identified via cross-validation, where the cost function was the regularised squared loss. The
parameters selected were one transfer component, r ¼ 0:01; l ¼ 0:01; c ¼ 1� 10�3 and one nearest neighbour; ten itera-
tions were also implemented.

A summary of the classification results for the numerical-to-experimental domain adaptation case study are shown in
Table 4. TCA and JDA both correctly classify all but one data point in the target domain, showing their applicability when
utilising physics-based models in generating labels for operational structures. These results show that these methods can
provide a way of alleviating problems associated with a lack of available damage state data. In contrast, ARTL completely
fails to infer the decision bound; likely due to difficulties in inferring a hyperplane-based classifier from very few data points
in the target domain. This problem will be compounded when cross-validation is used to infer the parameters of ARTL, as
poor performance in one fold may dramatically effect the selection of parameters.
Fig. 14. The marginal and class-conditional distributions for each JDA-transformed component for the numerical-to-experimental domain adaptation case
study. The source domain and target domain results are red and blue respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)



Table 4
Classification results for the numerical-to-experimental
domain adaptation case study trained on the labelled
source domain and applied to the unlabelled target
domain.

Method k-NN TCA JDA ARTL

Accuracy 50.0% 90.0% 90.0% 50.0%
F1-score 0.333 0.899 0.899 0.333
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4. Truly heterogeneous population case studies

Heterogeneous populations that are not topologically similar pose different challenges when compared to both homoge-
neous populations and heterogeneous populations that are topologically similar. All three methods outlined in this paper
require consistency in the dimensions of features between the source and target domain. From a structural dynamics per-
spective, the number of natural frequencies, damping ratios and modal vectors etc. would need to be equivalent in both
domains. Another question therefore arises as to what level of consistency is required in the label space between the two
domains. To discuss the required level of consistency, two case studies are presented. Both of these scenarios involve hetero-
geneous populations where each member is topologically dissimilar. The first case study considers a scenario where labels
are considered consistent, and the second outlines an inconsistent label space problem.

These scenarios assess whether domain adaptation is applicable in the more general sense i.e. the heterogeneous case
where structures in the populations are topologically dissimilar. This would allow labelled data from any structure to be
mapped onto a different structure, given the condition that the feature vectors are the same dimension, meaning general
classifiers could be constructed. This capability would mean that data from an experimental structure in a laboratory envi-
ronment could be used to label data for any operational structure; providing significant benefits in the application of SHM
across populations.

The two case studies in this section consider three and five-storey building structures. Both structures are constructed
numerically as defined in Section 3.1, with the exception of the five-storey structure having an extra two mass, damping

and stiffness terms i.e., mi; ci; kif g5i¼1, located above the third storey. Again, damage is modelled as open cracks located in
a single beam. The SHM problem for both scenarios is a two-class damage detection problem, where the source domain
is labelled and the labels in the target domain are unknown. The features used in both examples are the first three bending,
damped natural frequencies and damping ratios, meaning Xs 2 RNs�6 and Xt 2 RNt�6. Furthermore, a k-NN classifier is utilised
in both studies, in order to highlight the effectiveness of TCA and JDA techniques where k ¼ 1 and the distance is the Eucli-
dean distance. ARTL was implemented using the regularised squared-loss hyperplane classifier approach.
4.1. Consistent labels

The first case study considers the scenario where damage labels are consistent between the source and target domains for
a two-class damage detection problem. Specifically, this study considers that the labelled source domain data are generated
from a five-storey building structure and the unlabelled target domain data are from a three-storey building structure. As
stated, the first three bending, damped natural frequencies and damping ratios are utilised as features for both domains.
The two classes in this problem are an undamaged case and a damaged case, where an open crack of 50% of the beam width
is simulated at the midpoint of one beam located at the first degree-of-freedom, k1, i.e. between the ground and the first
storey. This is therefore a case where labels are consistent, i.e. the specific damage scenario can be found in both the five
and three-storey structures.

The source and target domain structures both have the same geometric and material properties found in Table 5, with the
structural differences occurring topologically, i.e. the number of storeys. 250 repeats for each class were obtained for the
source domain; for the target domain 100 repeats for each class were used as training data and a further 250 repeats for each
class used as testing data in the domain adaptation methods. Figs. 15 and 16 show the features for the source and target
domains, where each quadrant is a two-dimensional comparison between feature combinations, ordered as natural frequen-
cies followed by damping ratios, i.e. the bottom-left quadrant is the first natural frequency against the third damping ratio.
The undamaged and damaged labels in these figures are ‘1’ and ‘2’ respectively.

To illustrate the applicability of domain adaptation in this context, a k-NN classifier was trained on the (normalised)
source domain data and applied to the (normalised) target domain data. The accuracies and macro F1-scores are both
0.167 and 33.3% respectively for the training and testing target domains, indicating a complete failure of the classifier to
generalise.
4.1.1. Domain adaptation
TCA, JDA and ARTL were implemented on the heterogeneous population with consistent labels. For each method, cross-

validation was performed using a ten-fold approach such that the number of components and regularisation parameters



Table 5
Properties of the source and target structures for the consistent labels case study.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 300; 40; 8f g 300; 40; 8f g
Mass geometry, lm; wm; tmf g mm 400; 400; 40f g 400; 400; 40f g
Crack geometry, lcr ; llocf g mm 20:0; 150f g 20:0; 150f g
Elastic modulus, E GPa N 210;1� 10�10

� �
N 210;1� 10�10
� �

Density, q kg=m3 N 7800;10ð Þ N 7800;10ð Þ
Damping coefficient, c Ns=m G 8;0:8ð Þ G 8;0:8ð Þ
Number of Storeys 5 3

Fig. 15. Source domain features for the consistent labels case study (where natural frequencies are in Hz).
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could be determined. The macro F1-score was the cost function for TCA and JDA, and the regularised squared loss imple-
mented for ARTL. A linear kernel was used for each approach.

The number of components and regularisation parameter identified for TCA were two and l ¼ 1� 10�3. The transfer
components are depicted in Fig. 17 and the marginal distributions shown in Fig. 18. These figures show that the first com-
ponent satisfactorily maps the source and target domains onto the same space. In contrast, there is still distance between the
second transfer component in the source and target domains. This happens to be beneficial as the target domain components
are more separable, and is similar to what was observed in TCA and JDA in the multi-class case study. Here the target domain
marginal distributions are approaching the source domain marginal distributions, and therefore are further away from the
class boundary making the problem more separable.

JDA, on the other hand, satisfactorily (from a visual point of view) maps all the transfer components onto the same space
as demonstrated in Fig. 19 and in the marginal and class-conditional distribution shown in Fig. 20. This indicates that the
joint distributions are different for the source and target domains, as expected given that the features are from a heteroge-
neous population. However, the JDA transfer components for each label are closer together, meaning there is likely to be
more confusion in any inferred classifier when compared to the TCA components. The number of components and regular-
isation parameters identified for JDA were five and l ¼ 1� 10�3 respectively.

ARTL cross-validation, using the regularised squared-loss cost function, identified one component and the following
parameters: r ¼ 1� 10�4; l ¼ 1; c ¼ 1� 10�4 and one nearest neighbour; ten iterations were used inside the algorithm.

Table 6 presents the classification results for the heterogeneous population with consistent labels case study; trained on
the labelled source domain data and applied to the unlabelled target domain data sets. In this example, a k-NN classifier is
trained on the transformed source domain components and tested on the training and testing target domain data for TCA and
JDA. ARTL is implemented using the regularised squared-loss form. These findings show the benefits of domain adaptation
for the heterogeneous population case. It is interesting to note that TCA outperforms JDA, even though as previously stated,
JDA maps the source and target domains closer together. This difference in performance is likely due to the increased



Fig. 16. Target domain features for the consistent labels case study (where natural frequencies are in Hz). The training and testing data are denoted by þð Þ
and �ð Þ respectively.

Fig. 17. A visualisation of the TCA-transformed components for the consistent labels case study. The source domain and the training and testing data for the
target domain are denoted by �ð Þ; þð Þ and �ð Þ respectively.

Fig. 18. The marginal distributions for each TCA-transformed component for the consistent labels case study. The source domain and target domain results
are red and blue respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. A visualisation of the JDA-transformed components for the consistent labels case study. The source domain and the training and testing data for the
target domain are denoted by �ð Þ; þð Þ and �ð Þ respectively.

Fig. 20. The marginal and class-conditional distributions for each JDA-transformed component for the consistent labels case study. The source domain and
target domain results are red and blue respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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separability in the TCA components as shown in Fig. 17. ARTL provides comparable results to TCA; this indicates that the
realignment of the classification hyperplane onto the manifold can improve the results when reducing the distance between
the joint distributions.



Table 6
Classification results for the consistent labels case study trained on the labelled source domain and applied to the unlabelled target domain.

Method k-NN TCA JDA ARTL

Mapping Training Accuracy 50.0% 100.0% 91.0% 99.5%
F1-score 0.333 1.000 0.910 0.995

Mapping Testing Accuracy 50.0% 100.0% 93.2% 100%
F1-score 0.333 1.000 0.932 1.000
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4.2. Inconsistent labels

In order to demonstrate the applicability of domain adaptation on heterogeneous populations, where labelling is not con-
sistent between the two structures, a final two-class damage detection case study is presented. The source and target domain
data were obtained from a three and five-storey building structure respectively, where the properties are defined in Table 7.

In this scenario, damage occurred at the top degree-of-freedom for both structures, i.e. between the second and third floor
for the three-storey building structure, k3, and between the fourth and fifth floor for the five-storey building structure, k5.
This can be considered an inconsistent labelling scenario as the category of damage in the five-storey structure cannot occur
in the three-storey structure as it does not have a fifth degree-of-freedom. The undamaged and damaged labels are denoted
‘1’ and ‘2’, where damage is simulated as a midpoint open crack at one of the beams at a particular degree-of-freedom. The
features for this case study are presented in Fig. 21 and 22; these figures show that the source domain classes are more sep-
arable than the target domain. The number of data points for the source and target domains are Ns ¼ 500 and Nt ¼ 200,
where data points are evenly split between classes; the number of data points used to test the target domain mapping
was Ntest ¼ 500. A k-NN classifier trained on the (normalised) source domain data and applied to the (normalised) target
domain data produced accuracies and macro F1-scores of 50% and 0.333 for both the training and testing data. Again, this
shows a need for domain adaptation, as the classifier fails to generalise between the source and target domains.

4.2.1. Domain adaptation
The three domain adaptation methods were utilised in generating classifiers that generalised between the source and tar-

get domains for a heterogeneous population with inconsistent labelling. Cross-validation, using ten-folds, was applied such
that the regularisation parameters and number of components could be obtained. Linear kernels were also implemented.

TCA mappings are shown in Fig. 23, and the marginal distributions in Fig. 24. These figures display similar behaviour to
the consistent label example, where the target domain component two is mapped in a more separable manner than in the
source domain. JDA also produces similar results, as presented in Figs. 25 and 26; however, the marginal distributions for the
second component are closer, likely due to the fact that p Ysj/ Xsð Þð Þ– p Yt j/ Xtð Þð Þ. For both TCA and JDA, two components
were identified via cross-validation with l ¼ 0:005 and 50 respectively. When applied to ARTL with ten iterations, cross-
validation using the regularised squared-loss cost function selected one transfer component, r ¼ 1; l ¼ 1; c ¼ 1 and one
nearest neighbour.

Table 8 presents a summary of the classification results for this case study; trained on the labelled source domain data
and applied to the unlabelled target domain data sets. The table shows that all domain adaptation methods are applicable
for a two-class damage detection problem in heterogeneous populations, where labelling is inconsistent and the features are
consistent. This excellent classification performances are likely due to the fact that the labels can be considered consistent, in
the sense that they both relate to ‘damage’ in a two-class detection problem, rather than being location specific.
5. Conclusions

Domain adaptation has been demonstrated to be applicable in a variety of population-based SHM scenarios. This
approach to transfer learning seeks to reduce the distance between data distributions in a source and target domain such
that a classifier generalises between the two domains. As a result, supervised learning methods trained on a labelled source
domain are applicable to an unlabelled target domain. In SHM, this situation occurs when labelled feature data are obtain-
able for one structure and classification is required on the unlabelled data of a different structure.

In discussing the applicability of domain adaptation for population-based SHM, four case studies were presented, cate-
gorised by whether the structures were heterogeneous populations with nominally-similar topologies or heterogeneous
populations with differing topologies. Homogeneous populations, like a set of the same model wind turbine within a partic-
ular wind farm, are most likely to meet the mathematical requirements of domain adaptation, i.e. the feature set X s ¼ X t and
labelled space Ys ¼ Yt are consistent. On the other hand, these requirements may also be met in certain heterogeneous pop-
ulations, like those with nominally identical topologies, where for example transmissibilities over the same spectral lines are
utilised as features, and labelling is consistent. However, if the more general case for heterogeneous populations, where con-
sistency between these two objects is not met, then transfer learning offers a significant change in machine learning-based
SHM. Currently, these algorithms rely on similarities between datasets in the source and target domains such that transfer
learning can be performed. As structures and applications include more strongly heterogeneous populations, such as a



Table 7
Properties of the source and target structures for the inconsistent labels case study.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 300; 40; 8f g 300; 40; 8f g
Mass geometry, lm; wm; tmf g mm 400; 400; 40f g 400; 400; 40f g
Crack geometry, lcr ; llocf g mm 20:0; 150f g 20:0; 150f g
Elastic modulus, E GPa N 210;1� 10�10

� �
N 210;1� 10�10
� �

Density, q kg=m3 N 7800;10ð Þ N 7800;10ð Þ
Damping coefficient, c Ns=m G 8;0:8ð Þ G 8;0:8ð Þ
Number of Storeys 3 5

Fig. 21. Source domain features for the inconsistent labels case study (where natural frequencies are in Hz).
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population that includes rotating machinery with a cracked disc and a building structure with a crack on a floor, these map-
pings will need to be more complex, with the limitations of these approaches being an area for further research.

The specific domain adaptation algorithms investigated in this paper were TCA, JDA and ARTL, which differ in their pro-
gression of assumptions from marginal distribution adaptation, to joint distribution adaptation, and finally manifold regu-
larisation with hyperplane inference. These methods all showed significant benefits in terms of classification performance,
when compared against conventional supervised classification techniques. In addition, for each example, accuracies above
90% were produced for the majority of domain adaptation techniques.

Two case studies for heterogeneous populations that are topologically similar were presented, a multi-class case study
and an application of domain adaptation from a numerical simulation as the source domain to an experimental target
domain. The first case study performed damage detection and location between steel (source) and aluminium (target)
three-storey building structures with different geometric dimensions. Classification results showed a progression of perfor-
mance from TCA to ARTL. This means that the joint distributions were different between the two domains and that perfor-
mance was improved by manifold regularisation. Furthermore, this work demonstrates that domain adaptation is applicable
to any multi-class classification problem between topologically-equivalent structures, where labelled data is only known in
the source domain. In this context, the problem of damage detection, location, inference of the type and extent are all pos-
sible, as long as labels are known in the source domain and the chosen features are separable in relation to their class labels.

The second topologically-equivalent case study presented the applicability of domain adaptation in resolving the lack of
available damage-state data problem in SHM. In this scenario, a numerical simulation was utilised in providing labelled
source domain data for an unlabelled experimental structure. TCA and JDA correctly classified all but one data point, and
hence show that domain adaptation provides a solution to obtaining labelled feature data from physics-based models. This
opens up a new category of approach in utilising physics-based models in SHM, and is highlighted as a significant area of
further research within model-assisted SHM. It is noted that a better classifier than k-NN would still have had difficulties



Fig. 22. Target domain features for the inconsistent labels case study (where natural frequencies are in Hz). The training and testing data are denoted by þð Þ
and �ð Þ respectively.

Fig. 23. A visualisation of the TCA-transformed components for the inconsistent labels case study. The source domain and the training and testing data for
the target domain are denoted by �ð Þ; þð Þ and �ð Þ respectively.

Fig. 24. The marginal distributions for each TCA-transformed component for the inconsistent labels case study. The source domain and target domain
results are red and blue respectively.
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Table 8
Classification results for the inconsistent labels case study trained on the labelled source domain and applied to the unlabelled target domain.

Method k-NN TCA JDA ARTL

Mapping Training Accuracy 50.0% 100.0% 100.0% 100.0%
F1-score 0.333 1.000 1.000 1.000

Mapping Testing Accuracy 50.0% 100.0% 100.0% 100.0%
F1-score 0.333 1.000 1.000 1.000

Fig. 25. A visualisation of the JDA-transformed components for the inconsistent labels case study. The source domain and the training and testing data for
the target domain are denoted by �ð Þ; þð Þ and �ð Þ respectively.

Fig. 26. The marginal and class-conditional distributions for each JDA-transformed component for the inconsistent labels case study. The source domain
and target domain results are red and blue respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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in classifying all the of the target domain correctly for both TCA and JDA. This is because any bound inferred from the source
domain would not have had enough information to correctly classify the single misidentified data point.

In terms of heterogeneous populations with dissimilar topologies, two scenarios were considered: consistent and incon-
sistent feature labelling. In the first case study, the damage scenario was the same between a five and three-storey building
structure, namely an open crack in a beam at the first degree-of-freedom. TCA and ARTL both produced 100% classification
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accuracies on test data in the target domain. This result demonstrates that if the features and labels are consistent then
domain adaptation can be applied to heterogeneous populations with non-identical topologies.

The final case study involved inconsistent labelling between a three (source) and five (target) storey building structure.
This breaks the assumption contained within domain adaptation, that Ys ¼ Yt . However, in this scenario, where an open
crack was considered at a beam between the top two floors, macro F1-scores of 1.000 were produced for all three methods.
This is likely due to increased separability in the source domain features, meaning that the target domain is made more sep-
arable in the transformed space. However, applying domain adaptation in this context is not guaranteed to produce good
results as it invalidates the label space assumption. In this example, the methods are likely to have worked as it was a
two-class detection problem where the label can be considered ‘damaged’ and does not relate to the location, type or extent.

Finally, this paper has outlined several novel applications of domain adaptation within population-based SHM. TCA, JDA
and ARTL — all new techniques within SHM — have shown significant increases in classification performance, where gener-
ally ARTL performs best when the conditional distributions are not equal between the source and target domain; otherwise,
TCA provides satisfactory performance. Further research should be conducted in developing techniques for the general
heterogeneous population case, i.e. where the feature and label space are inconsistent. In addition, research should be con-
ducted in utilising better semi-supervised labelled methods with JDA and ARTL rather than a naive pseudo-labelling
approach.
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