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This is the third and final paper in a series laying foundations for a theory/methodology of
Population-Based Structural Health Monitoring (PBSHM). PBSHM involves utilising knowl-
edge from one set of structures in a population and applying it to a different set, such that
predictions about the health states of each member in the population can be performed
and improved. Central ideas behind PBSHM are those of knowledge transfer and mapping.
In the context of PBSHM, knowledge transfer involves using information from a source
domain structure, where labels are known for given feature sets, and mapping these onto
the unlabelled feature space of a different, target domain structure. This mapping means a
classifier trained on the transformed source domain data will generalise to the unlabelled
target domain data; i.e. a classifier built on one structure will generalise to another, making
Structural Heath Monitoring (SHM) cost-effective and applicable to a wide range of chal-
lenging industrial scenarios. This process of mapping features and labels across source
and target domains is defined here via domain adaptation, a subcategory of transfer learning.
A mathematical underpinning for when domain adaptation is possible in a structural
dynamics context is provided, with reference to topology within a graphical representation
of structures. Subsequently, a novel procedure for performing domain adaptation on topo-
logically different structures is outlined.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

This is the third and final paper in a series proposing foundations for a theory and methodology for Population-Based
Structural Health Monitoring (PBSHM); it is preceded by [1,2]. PBSHM is the process of utilising information across a popu-
lation of structures in order to perform and improve inferences that generalise for the complete population [3]. This
approach to Structural Health Monitoring (SHM) clearly provides significant benefits; any knowledge, whether about the
behaviour of features, or any damage-labelled data, obtained from any other members of the population, aids predictions
across the whole population. For example, in the case of an aeroplane fleet, an assortment of damage-labelled data may
be available for different members of the fleet, all under differing operational conditions. The concept of Population-Based
Structural Health Monitoring (PBSHM) is to incorporate the feature and label data from each aeroplane to generate a
machine learning-based approach that generalises across the complete fleet for all damage scenarios, especially when many
members of the fleet have no labelled data associated with them.

Central concepts for performing PBSHM are those of knowledge transfer and mapping. These two processes are crucial for
realising PBSHM for various reasons. Firstly, conventional approaches to data-driven SHM, whether supervised, unsuper-
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vised or semi-supervised machine learning methods, assume that the training and test data are drawn from the same dis-
tribution. This assumption breaks down in PBSHM, as each member of the population will have differences in their data dis-
tributions, because of environmental variations, manufacturing and assembly differences, operational conditions etc. As a
result of the differences, conventional machine learning approaches fail to generalise; for example, a classifier trained on
data from one aeroplane in a fleet will generally fail to classify for a different aeroplane from the same population. Mapping
data from one member of the population to another is therefore required, such that a general classifier can be generated.
Another issue is that damage-labelled data, for all possible damage states of interest, are often not obtainable for each indi-
vidual in the population. In fact, it is generally infeasible to obtain a complete label set for all possible damage states, even for
one structure. However, it may be possible to obtain a relatively complete damage-label set by combining labels from all
structures in a population, or from a historic database from other SHM campaigns. Leveraging this label knowledge from
across a population and mapping it onto a consistent space, means that knowledge transfer is possible, aiding the generation
of a general machine learning method for the complete population. By utilising these two processes, data-based SHM meth-
ods can be generated that are cost-effective and applicable across a wider variety of challenging industrial applications.

Transfer learning is one approach that aims to improve the performance of a learner by transferring knowledge between
different domains. Within this branch of machine learning, various methods exist with differing assumptions about consis-
tency between domains and what knowledge is being transferred. This paper outlines the mapping and knowledge transfer
problems within PBSHM, with a particular focus on modal-based features. Specifically, the work presented here focuses on
recent successes in the application of domain adaptation [4] – a sub-category of transfer learning – in PBSHM. Domain adap-
tation assumes labelled data are available in a source domain and that this can be used to aid classification in an unlabelled
(or partially-labelled) target domain, by mapping the two domains onto a common latent space on which the data distribu-
tions coincide. However, conventional approaches to domain adaptation assume consistency between the feature and label
space for each domain. This means that the features from one structure must be the same dimension as the other structure
(i.e. the same number of natural frequencies), and that any damage labels for detection, localisation, classification or assess-
ment can exist for both structures. These constraints can be limiting in the context of PBSHM. With reference to the topology
of a graphical representation of a structure (discussed in Part II of this series [2]), this paper presents a mathematical under-
pinning for when domain adaptation is possible within the context of PBSHM.

The outline of this paper is as follows. Section 2 outlines the PBSHM contexts where transfer learning is applicable, pro-
viding key definitions and an overview of the mapping and knowledge transfer problems. Following the mapping problem
descriptions, Section 3 demonstrates the contexts in which domain adaptation is applicable, referencing graphical represen-
tations of structures, through several applications on n-storey building structures. By exploring these applications, a novel
process is developed that overcomes some of the restrictions of domain adaptation, namely in the context of label inconsis-
tency. A further example is also provided in Section 3 demonstrating the applicability of utilising physics-based models in
labelling real world data through transfer learning. Finally, conclusions are presented highlighting the effectiveness of a
transfer learning approach to PBSHM.

2. Population-based structural health monitoring and transfer learning

PBSHM involves mapping data and labels from different structures within a population, such that a general learner can be
inferred across the complete population. As a consequence, health monitoring can be performed, potentially online, for any
member of the population. This section seeks to define the mapping and knowledge transfer scenarios within PBSHM and
demonstrate the applicable forms of learning for each scenario, with an emphasis on transfer learning.

2.1. Population types

Key definitions are required in order to outline the mapping problems within PBSHM. A population, in the context of
PBSHM, is a group of structures (the smallest being a group of two structures) that provides information required for per-
forming health monitoring. This general definition of a population can be further divided into two categories: homogenous
and heterogeneous populations [2]; these groupings relate to the level of dissimilarity within a population, where both pop-
ulation types benefit from knowledge transfer. Colloquially, a homogeneous population is one in which any pair of structures
in the population can be deemed nominally identical for a given context [1,2]. A heterogeneous population is thus a group of
non-identical, and therefore different structures. Conceptually, differences will occur for a multitude of reasons, and struc-
tures will be deemed different due to various properties, based on specific contexts. This leads to a spectrum of different
types of heterogeneous populations, which as similarities increase, will approach a homogenous population. One method
of quantifying these differences, utilising Irreducible Element (IE) models and Attributed Graphs (AGs), has been discussed
in Part II of this series of papers [2]. This approach highlights three main sources of difference within a structure, relating to
the topology of the graph and types of attribute stored within the nodes and edges:

� Geometry: relates to the shape, size and scaling of a structure in a population, e.g. to a group of aluminium rectangular
plates where each plate has a different length, width and thickness.
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� Material: relates to different material classes, specific materials, and their properties for structures in a population, e.g. to
a pair of the same size rectangular plates where one is made from aluminium and another from steel.

� Topology: relates to different topologies for graphical representations of structures in a populations, e.g. a pair of alu-
minium beams where one is a cantilever and the other is éncastre, where there is a difference between the two
lumped-mass representations due to the difference in boundary conditions.

These classes of differences are summarised in Fig. 1, where each of these categories may overlap forming a different
category of heterogeneous population. For example, consider a heterogeneous population of two beam-like structures,
these may have geometric differences, e.g. Structure One is a beam with a tapered rectangular geometry and Structure
Two is a beam of the same length with a uniform I-beam cross-section. In addition to these geometric differences,
aspects of the materials may be different, e.g. Structure One is constructed from a unidirectional carbon-fibre layup
and Structure Two is formed from the same carbon fibre but in a plain-weave layup. This population is therefore a
heterogeneous population due to geometric and material differences, which are properties stored in the attributed graph,
as defined in Part II [2], meaning the population would be located in the Venn diagram overlap between material and
geometry.

More formal definitions may also be attached to these types of population, as discussed in paper I and II [1,2]. A homo-
geneous population can be defined as a group of structures that are topologically homogeneous where the geometric Hg and
material Hm properties (collectively H ¼ Hg ;Hm

� �
) in the nodes and edges of the attributed graph are defined as being

random draws from a concentrated base distribution i.e. p Hð Þ. It is noted that topologically homogeneous, as defined in
paper II [2], relates to a group of structures that can be considered pairwise topologically equivalent, with respect their
graphical representation, e.g. two structures that could be modelled as five degree-of-freedom lumped mass models.
The probability mass in the base distribution p Hð Þ therefore defines the small differences between members in the pop-
ulation. A strongly-homogeneous population would have a unimodal base distribution with low dispersion for the geometric
and material properties [1], where the strictest, perfect, form of homogeneous population is one in which the base distri-
bution is a Dirac delta function, i.e. each member of the population is exactly the same. This latter scenario never occurs in
reality, but is the assumption in applying conventional machine learning methods trained on one structure, to another.
Using these population definitions and categories of difference helps determine the difficulty of the mapping problem
for PBSHM.

It is also noted that differences observed in data may also occur outside the structural properties of individuals in a pop-
ulation, not captured in the attributes and topology1 discussed above. These differences will relate to how data acquisition and
any further processing to obtain features were performed. For example, differences in sensor placement will lead to differences
in data distributions, even if those sensors are placed in the ‘same’ irreducible element of the structure. Properties of the data
acquisition may also affect the obtained feature for each member of the population, e.g. the transmissibilities from two mem-
bers of a homogeneous population may be different due to differences in the raw data sample rate. These sources of difference
related to data acquisition and processing will need to be considered in defining the mapping problems in PBSHM; however, this
paper simplifies the scenarios such that only structural differences in a population are considered.

2.2. Transfer learning

Transfer learning offers several techniques for dealing with scenarios where domains, tasks and distributions used within
the training and testing of a learner are different [5]. Distinct from multi-task learning, where the objective is to learn mul-
tiple tasks across different domains [6], transfer learning leverages knowledge from source tasks in improving specific target
tasks, i.e. the focus is on target tasks rather than all tasks (both source and target) equally [5]. This type of learning is appli-
cable to PBSHM, even in the homogeneous population scenario, as variations in each structure within the population will
lead to differences in the data distributions, meaning that a learner trained on one structure will not apply to another struc-
ture in the population. Before formally defining transfer learning, several other objects are required [5].

Definition 1. A domain D ¼ X ; p Xð Þf g is an object that consists of a feature space X and a marginal probability distribution

p Xð Þ over the feature data X ¼ xif gNi¼1 2 X , a finite sample from X .
Definition 2. A task T ¼ Y; f �ð Þf g is an object that consists of a label space Y and a predictive function f �ð Þ (p Y jXð Þ in a prob-
abilistic setting) which can be inferred from training data xi; yif gNi¼1 where xi 2 X and yi 2 Y.

It is noted for clarity that both X and Y are spaces and not actual observations, which instead are denoted by the finite
samples sets X and Y (for the feature and label respectively). In the case of a single source and target domain, there will be a

source domain dataset Ds ¼ xs;i; ys;i
� �Ns

i¼1 where xs;i 2 X s and ys;i 2 Ys, and a target domain dataset, formed generally as

Dt ¼ xt;i; yt;i
� �Nt

i¼1 where xt;i 2 X t and yt;i 2 Yt [5]. In practice the target domain dataset will often have no label information

attached to any feature observation (hence the need for transfer) i.e. Dt ¼ xt;i
� �

; although it can still be said that each feature
1 It is noted that topology includes boundary condition and loading definitions.



Fig. 1. Categories of heterogeneous population within population-based SHM.
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observation has a ‘true’, but unknown, label associated with it in the label space Yt (where the goal of transfer learning is to
identify the ‘true’ label). Lastly, it is generally assumed that there will be more observations in the source domain than target
domain, i.e. 0 6 Nt � Ns. Given these objects, one can formally introduce transfer learning.

Definition 3. Transfer learning states that given a source domain Ds and task T s, and a target domain Dt and task T t , it is the
process of improving the target predictive function f t �ð Þ in T t by using knowledge from Ds and T s, whilst assuming Ds – Dt

and/or T s – T t .

Transfer learning methods then differ in their assumptions about whether X ; p Xð Þ; Y or p yjXð Þ are consistent across the
source and target. Another distinction is also made within the transfer learning literature about the dimensions d of the fea-
ture spaces [7,8].

Definition 4. Homogeneous transfer learning assumes that the feature and label spaces represent the same attributes,
X s ¼ X t and Ys ¼ Yt , and therefore that the dimensions of the feature space are equal, ds ¼ dt .
Definition 5. Heterogeneous transfer learning assumes that the feature spaces are non-equivalent, X s – X t , and often that the
source and target domains share no common features, meaning ds – dt . In addition, heterogeneous transfer learning can also
assume that Ys – Yt .

To contextualise these categories, PBSHM-based examples are provided. Homogenous transfer learning is the case where
both feature and label spaces are equal. An example where these techniques are applicable is a localisation problem between
two aircraft. In this scenario the labels for both aircraft are undamaged (‘0’), or damage in the left (‘1’) or right wing (‘2’)
i.e. Ys ¼ Yt 2 0;1;2f g. The feature spaces for both aircraft are transmissibilities of 1024 spectral lines across the same fre-
quency range, i.e. X s ¼ X t as ds ¼ dt ¼ 1024. Heterogeneous transfer learning is applicable when at least the features are
not the same. An example where both the features and labels are not equal is a localisation problem between a two-span
cable stay bridge (source) and a five-span truss bridge (target), where the goal is to detect which span is damaged. Here there
would be three and six possible labels for the source and target structures respectively, i.e. Ys – Yt . In addition, the feature
spaces for these bridges might be different, e.g. the source features are the first ten deck natural frequencies i.e. ds ¼ 10 and
the target feature data may be 512 point acceleration time series i.e. dt ¼ 512. In this context it can still be expected that
there is information that can be transfer between these structure (potentially where the mapping passes through some
latent space).

Clearly heterogeneous transfer learning is the more challenging, but more general category of approach. This is because
the techniques require a mapping to account for dimensionality transformations, a more complex mapping of the joint dis-
tributions, as well as the potential to handle inconsistent label spaces.

In order to clarify terminology, it is noted that the categories of homogeneous and heterogeneous transfer learning do not
directly relate to homogeneous and heterogeneous populations, i.e. homogeneous transfer learning is not the only way of per-
forming knowledge transfer for a homogeneous population and heterogeneous transfer learning is not the only way of perform-
ing knowledge transfer for a heterogeneous population. This is clarified further in Section 2.3, in which different transfer
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learning approaches are linked to a variety of population types, and in Section 3 with the application of homogeneous trans-
fer learning to both homogeneous and heterogeneous populations.

2.2.1. Transfer learning technologies
There are a wide variety of transfer learning technologies within the literature. This section briefly describes a variety of

these approaches (although the aim here is not to be exhaustive) such that the scope of approaches to knowledge transfer in
PBSHM is made clear; the interested reader is referred to the following review papers for more details [5,7,8]. In particular,
this section will discuss parameter, instance and feature-based approaches to transfer learning.

Typically, within the realm of deep learning and convolutional neural networks, transfer learning techniques have been
developed that are parameter-based or fine-tuning approaches. These approaches seek to learn some parameter set, typically
a set of weights at a particular set of layers in a neural network, for some source domain, believing that these can be fixed
when learning a target task. When considering a convolutional neural network the idea is to use some pre-trained convo-
lution neural network, where the belief is that some of the convolutional layers (and their weights) have captured some fea-
ture extraction process that will generalise to the target domain. Examples of this approach can be found within the SHM
literature, all focussing on image classification [9–11].

Another approach to transfer learning has been to form the problem from an instance-based view. Here the aim is to
determine the degree of similarity between source domains and the target domain, where the measure of similarity helps
adjust weights on the source domains (even on a point or cluster basis) and hence on the level of information transferred
[12].

The last form of transfer learning, and the one utilised in this paper, is a feature-based approach. These methods seek to
find some feature representation (typically through some mapping) where the differences between the source and target
domains are reduced. Several of these feature-based approaches have been utilised within an SHM context [4]. A large num-
ber of approaches exist within the literature that approach transfer learning in this manner [13–18], all with varying
assumptions about the amount of information available in learning the mapping to the feature representation, and what
the differences are between the source and target.

2.2.2. Other approaches for knowledge transfer
Outside of transfer learning, there exists alternative methods that also seek to transfer knowledge between different sys-

tems and datasets. Specially this section will consider the concepts of ontologies and knowledge graphs.
Ontologies aim to be representations of entities (e.g. information and knowledge) describing all their interdependences

and relationships. As such, ontologies are useful in outlining all knowledge about a specific domain [19], e.g. what a company
knows about SHM and its application to their structures. The benefits of creating an ontology are not only that they are help-
ful in sharing or explaining concepts, but that if a new project or domain is envisaged, previous ontologies can be reused or
transferred to these purposes, helping identify better or more effective processes. One can envisage how an ontology might
also form part of a theory on PBSHM, providing several benefits such as helping to transfer what techniques and methods
may be appropriate from one system to another etc. Ontologies have been explored in several disciplines such as computer
science, semantics and natural language processing, and have also been considered in an SHM context [20–22]. The reason
ontologies are not explored in detail in this series (although this is an area to be explored in the future), is that ontologies do
not form a method themselves (although transfer learning could be part of an ontology) for transferring label information
directly to feature data, which is the key aim of mapping and transfer in this current paper.

Knowledge graphs, in a similar manner, also aim to be objects that define entities and their interrelationships. These have
primarily been developed for aiding search engines, by allowing semantic searches. However, in recent years, knowledge
graphs have been integrated as training data for machine learners [23,24]. Obviously, parallels to Part II [2] can be drawn,
where the structures being represented as graphs can more formally be used in training machine learners, rather than using
them to isolate the SHM problem, and indicate where transfer learning is applicable. However, even if graphs were formally
used in training a machine learner for PBSHM, some form of transfer learning would still be required, as the problem remains
of moving information from a source graph to a target graph. For this reason, this paper focuses mainly on transfer learning
as the key tool in performing knowledge transfer.

2.3. Mapping scenarios

Before defining mapping scenarios within a population-based view of SHM, it is first important to define the categories of
problem established in conventional SHM (where an SHM problem is denoted SP) as this will help in defining both what
knowledge is being transferred and when transfer is possible. There are several types of challenge within SHM, categorised
by Rytter into a hierarchy [25], where generally difficulty increases with each level in the hierarchy.

� Detection: identify the presence of damage.
� Localisation: identify the position of damage.
� Classification: identify the type of damage.
� Assessment: identify the extent of damage.
� Prognosis: identify the safety and residual life of the structure.
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This hierarchy provides a framework for defining the mapping problems within a population-based SHM context, as each
level describes the required label agreement. By grounding the mapping scenarios within PBSHM to the hierarchy of SHM
problems, one shows that the degree of similarity required is problem dependent. This approach will be useful in leveraging
as much prior engineering knowledge as possible in performing transfer learning for PBSHM (although it is noted that other
divisions of SHM problems may also provide different insight into transfer learning in PBSHM). Table 1 states the level of
feature and label2 consistency for the categories of population outlined in Section 2.1 from a physical viewpoint. The table con-
siders modal features and that the localisation label resolution is at the edge/node level of the graphical representation of the
structure [2]. Each column in the heterogeneous population category assumes that all other columns are equivalent, and that
more complex heterogeneous populations are formed by combining columns, as indicated by Fig. 1.

Two types of heterogeneous population in Table 1, material and topology, are stated as having scenarios where label con-
sistency may or may not occur. Both of these categories have a hierarchy of additional attributes (discussed in Part II [2]) that
will define whether these labels are consistent. For example, if populations are heterogeneous in terms of their material
class, the classification and assessment labels will be inconsistent, e.g. a metallic structure will not experience delamination,
whereas there are delamination labels associated with a composite. Furthermore, even when the material class and specific
materials are the same, the grade or batch properties will cause variation that could cause assessment label inconsistency. In
a similar manner, classification and assessment label consistency can change within the topology category. If the topologies
between a population are different, but all the joints within the graph are equivalent, then the classification and assessment
labels will be consistent. In contrast, if the joints change between structures, e.g. one structure is assembled via bolted joints
and the other structure welded, then the classification and assessment label spaces will be inconsistent.

In scenarios where the label spaces are not consistent, some form of label space matching is required. This is particularly
important in an unlabelled (or partially-labelled) target space where information on cluster relationships between the
source and target domain are not defined in the training data and the label space mismatch means that the problem is
ill-defined; for example, in a SHM localisation problem, where some locations do not actually exist on both structures.

Even when the damage label space between members of the population is inconsistent globally, a subset of these labels
may be consistent, as shown in Fig. 2. This demonstrates the power of graph and attribute matching between members of a
population (see Part II [2]), as locating the common attributes/subsystems Sc between members of a population helps iden-
tify the level of information that can be exchanged through a mapping / (where this mapping may be through a latent space
[5]). Within an IE and AG representation of structures, these common subsystems Sc become common subgraphs in the AGs,
which can be determined by graph matching, as demonstrated in Part II [2]. There will be SHM scenarios in which only part
of a population needs to be similar for mapping to be possible. For example, if the SHM problem SP is performing damage
localisation on a five and three degree-of-freedom structure, then locally features and localisation labels can be considered
consistent. This would occur if, for example, the first three natural frequencies are considered, and that damage labels are
only used for the first three degrees-of-freedom for each structure. It is also noted that global feature consistency can be
obtained, even for topologically-heterogeneous populations, by selecting an appropriate feature. For example, if in the pre-
vious example the features were transmissibilities, with the same number of frequencies bins over the same frequency
range, then the feature spaces are consistent. However, this leads to questions over whether the key damage sensitive infor-
mation is contained within the feature for both structures, and may lead to a phenomenon known as negative transfer, dis-
cussed in Section 2.4.

It is clear that the path to performing SHM on a population level requires a different workflow to that of conventional
SHM, where health monitoring is performed on an individual structure. Fig. 3 presents the differences in these workflows,
where graph matching and transfer learning become analogous stages to feature extraction, i.e. a damage sensitive feature for a
population will be one which captures structural similarities in the population and is sensitive to the same type of damage
(at least up to the SHM problem SP being performed), and which can be transferred appropriately between each member of
the population. This poses the question as to whether an appropriate feature for a conventional SHM problem will apply in
the population case, as scenarios will appear in which a feature will become inappropriate for a population context.

From Table 1 it is clear that the start of any population-based SHM campaign is considering what SHM scenario is
required and then obtaining the level of consistency and similarities between members of the population. Once this has been
obtained, there are then four mapping problems that occur: consistency in feature and label spaces, consistency in the fea-
ture space and inconsistency in the label space, inconsistency in the feature space and consistency in the label space, and
inconsistency in feature and label spaces. Table 2 defines the transfer learning approach appropriate for each assumption.
Label-space matching refers to the process of identifying and pairing equivalent label classes in the transfer learning map-
ping, where some classes will be left unmatched between the source and target domains. This process must be performed
correctly to prevent negative transfer of class labels, and is challenging, as often the task domain is unlabelled (or minimally
labelled with undamaged labels only) requiring some form of semi-supervised learning [27]. It is important to state that this
risk of negative transfer increases when label inconsistency is assumed, for both homogenous and heterogeneous transfer
learning, and so as far as possible, a PBSHM scenario should be posed as one that is consistent in the label space.

At this point it is useful to compare transfer learning to other forms of learning that are also appropriate for a population-
based approach to SHM. As mentioned in the first paper of this series [1], a form is one approach to PBSHM for a homoge-
2 Prognosis labels are not considered here, as generally a physics-based model of damage progression is required in order to perform prognosis [26].



Table 1
Feature and label consistencies for types of population when considering modal features and localisation resolution at the graphical representation level.

Homogeneous Heterogeneous

Geometry Material Topology

Feature Consistency Yes Yes Yes No
Detection Label Consistency Yes Yes Yes Yes

Localisation Label Consistency Yes Yes Yes No
Classification Label Consistency Yes Yes Yes/No Yes/No
Assessment Label Consistency Yes Yes Yes/No Yes/No

Fig. 2. The potential mapping / between common attributes/subsystems Sc for a population of two structures Sk and Sj .

Fig. 3. Comparison of workflows for conventional (left) and population-based (right) SHM.

Table 2
The type of transfer learning approach for each feature and label consistency scenario.

Label Consistency Label Inconsistency

Feature Homogeneous Transfer Learning Homogeneous Transfer Learning
Consistency with Label Space Matching

Feature Heterogeneous Transfer Learning Heterogeneous Transfer Learning
Inconsistency with Label Space Matching
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neous population, and will assume consistent label spaces (with respect to the normal conditions) and can assume either
consistent or inconsistent feature spaces. This technique seeks to create a general representation of a population within
the data-domain. A form can be inferred from a group of structures and used to transfer this knowledge to remaining mem-
bers of a population. When used in this manner, it can be seen as a type of transfer learning. However, a form can also be
inferred across a complete population and in this scenario aims to infer an improved general learner for the complete pop-
ulation, in which it is a type of multi-task learning. The other difference for the form approximation in Part I [1] is that the
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model is usually learnt in the data-domain, and therefore the variance of a general learner will often be inflated, unlike trans-
fer learning or multi-task learning that often project to a latent space, with the aim of removing uncertainty not related to
the latent process. As stated previously, multi-task learning differs from transfer learning in that the aim is to infer a general
learner over all domains rather than transfer from one group to another. Multi-task learning can be both consistent and
inconsistent in the feature space but will be consistent in the label space. In a PBSHM context, multi-task learning may
be useful in removing the effects of confounding influences [28] and improving a learner for a structure with minimal labels
within a population.

2.4. Negative transfer

A major concern when performing transfer learning, is if information is incorrectly mapped from one domain to another
and reduces the performance of a learner when compared to learning from the target domain alone [5]. This phenomenon is
known as negative transfer, and often occurs when source domains are very dissimilar to the target domain [29]. The funda-
mental idea behind transfer learning is that the source domains contain useful and relevant information about a target
domain. This can be hard to determine before transfer, and becomes especially problematic when label inconsistency is
assumed, the target domain is unlabelled, or that an example for each label class is not available. A binary classification sce-
nario where negative transfer occurs is when source domain classes are mapped on to the opposite classes on the target
domain, due to the target domain being unlabelled, and the source classes being dissimilar to the target domain.

Negative transfer highlights the question of when to transfer, andmotivates the reasoning behind developing ameasure of
similarity between structures [2], as this provides an informative method for determining if a dataset will harm the learning
process.Within themachine learning literature, several approaches have been proposed that seek to address negative transfer
[30–32]. Graph-based methods that define the relationships between source domains by stating them graphically using a
transferability metric have been developed [30]. This provides similar motivation for the Irreducible Element and Attributed
Graph approach [2]; however, in an SHM context these graphical representations can be formed from a physics-based view-
point, aiding the strength of knowledge about similarity. Other approaches in avoiding negative transfer have sought toweight
each source domain based on its relevance to the target domain; this is known as instance weighting [12]. Local cluster-based
weighting has also been proposed,meaning that for each class on a source domain, an individualweighting is provided, stating
that informativeness may not be globally shared in a particular source domain [31]. As a result, it is important to consider and
account for the possibility of negative transfer when identifying what structures, and their corresponding datasets, to use in
transfer learning, as well as developing algorithms to reduce or remove the possibility of negative transfer within PBSHM.

3. Domain adaptation

Domain adaptation is one form of transfer learning that seeks to transfer feature spaces between source and target
domains, assuming that their marginal distributions over the finite sample set are not equal p Xsð Þ– p Xtð Þ (and often that
the joint distributions are different p Ys;Xsð Þ– p Yt ;Xtð Þ). These techniques are primarily designed for homogeneous transfer
learning, where the feature space and label space are consistent [5,13,15,17]; however, heterogeneous transfer learning
forms of domain adaptation do exist [14,16,7] for handling inconsistent feature spaces through a projection matrix.

This section outlines domain adaptation and its assumptions, before demonstrating its applicability to four case studies.
In order to keep this section concise one algorithm, Joint Domain Adaptation (JDA) [15] (and a novel modification of the
method), are used to illustrate the effectiveness of domain adaptation to different population types, as it contains the general
assumptions required for this discussion, and its learnt mapping is straightforward to visualise. It is noted that other algo-
rithms may show variations in performance, but the general challenges outlined in this section will still apply.

The first case study in this section performs PBSHM on a homogeneous population, with the second to fourth case studies
involving heterogeneous populations of differing degrees; geometric and material differences, topological differences, and
finally a numerical to experimental scenario. These case studies illustrate what aspects of PBSHM are currently achievable,
highlighting the required areas of further research in making PBSHM applicable across the complete range of problems out-
lined in Section 2.3.

Domain adaptation is formally defined (for a single source and target domain) as:

Definition 6. Domain adaptation applies when a given inference is required for a target domain Dt and task T t , and is the
process of improving the target predictive function f t �ð Þ in T t given a source domain Ds and task T s, whilst assuming X s ¼ X t

and Ys ¼ Yt but that p Xsð Þ – p Xtð Þ, and one can further assume p YsjXsð Þ – p Yt jXtð Þ.

Various algorithms have been developed for this scenario [13,15,17] and are a type of feature-based approach to transfer
learning, as discussed in Section 2.2.1. In addition, several of these approaches have been applied in a PBSHM context [4].

3.1. Joint domain adaptation

In the applications below Joint Domain Adaptation (JDA) is implemented in order to demonstrate the performance of
domain adaptation to different population types in PBSHM. The application of this algorithm is used to visually demonstrate
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the ideas outlined in Section 2. In keeping with the focus of the paper, only a brief outline of JDA is provided; the interested
reader is referred to [15,4] for more mathematical details. JDA is a homogeneous transfer learning technique introduced by
Long et al. [15] that assumes the joint distributions between the source and target are different p Ys;Xsð Þ – p Yt ;Xtð Þ, and finds
the optimal latent mapping / in which the distance between the marginal distributions p / Xsð Þð Þ � p / Xtð Þð Þ and the class
conditional distributions p / Xsð ÞjYs ¼ cð Þ � p / Xtð ÞjYt ¼ cð Þ for each class c 2 1; . . . ;Cf g in Y are minimised — the goal is that
the source and target datasets map on top of each other. This objective is assumed to approximate minimising joint distri-
butions from the source and target domains, where the class conditionals are matched, as the conditionals are often chal-
lenging and computationally expensive to compute.

The cost function used to minimise the distance between the source and target joint distributions is formed from the
(squared) Maximum Mean Discrepancy (MMD) distance [33]. This distance is the difference between the two empirical
means of the feature data through a nonlinear mapping induced by a kernel K into a Reproducing Kernel Hilbert Space
(RKHS), i.e. K ¼ k xi; xj

� �
¼ / xið ÞT/ xj

� �
(where a variety of kernels can be implemented, e.g. a linear kernel k xi; xj

� �
¼ xTi xj).

The MMD distance is defined as,
Dist p / Xsð Þð Þ; p / Xtð Þð Þð Þ ¼ 1
Ns

XNs

i¼1

/ xs;i
� �

�
XNt

i¼1

/ xt;i
� ������

�����
�����

�����
2

H

¼ tr KMð Þ ð1Þ
where K ¼ k X;Xð Þ 2 R NsþNtð Þ� NsþNtð Þ given X ¼ Xs [ Xt 2 R NsþNtð Þ�d and M, the MMD matrix, defines the empirical mean,
M i; jð Þ ¼

1
N2
s
; xi; xj 2 Xs

1
N2
t
; xi; xj 2 Xt

�1
NsNt

; otherwise:

8>><
>>: ð2Þ
By leveraging the low-rank empirical kernel embedding K
�
¼ KWWTK [34] the (squared) MMD distance for both the mar-

ginal and class-conditional distributions (i.e. the summation of the two distances) can be formed in terms of a set of weights
W 2 R NsþNtð Þ�k,
Dist p / Xsð Þð Þ; p / Xtð Þð Þð Þ þ Dist p / Xsð ÞjYsð Þ; p / Xtð ÞjYtð Þð Þ � tr WTKMcKW
� �

ð3Þ
where Mc is the MMD matrix for the complete distance, defining the empirical mean embedding; this summation can be
minimised to find the optimal latent mapping. It is noted that JDA assumes a completely unlabelled target domain and utilises
a simplistic form of semi-supervised learning, using a classifier trained on the source domain projection to predict pseudo-

labels Ŷ t for the projected target domain. The MMD matrix is defined as,
Mc i; jð Þ ¼

1
N cð Þ
s N cð Þ

s
; xi; xj 2 D cð Þ

s

1
N cð Þ
t N cð Þ

t

; xi; xj 2 D cð Þ
t

�1
N cð Þ
s N cð Þ

t

;
xi 2 D cð Þ

s xj 2 D cð Þ
t

xj 2 D cð Þ
s xi 2 D cð Þ

t

(

0; otherwise

8>>>>>>>>><
>>>>>>>>>:

ð4Þ
where D cð Þ
s ¼ xi : xi 2 Ds ^ y xið Þ ¼ cf g are the instances that belong in class c given the true source label y xið Þ of xi and

N cð Þ
s ¼ jD cð Þ

s j; and D cð Þ
t ¼ xi : xi 2 Dt ^ ŷ xið Þ ¼ cf g are the instances that belong in class c given the pseudo-target label ŷ xið Þ

of xi and N cð Þ
t ¼ jD cð Þ

t j (where ^ is the logical AND symbol). The optimisation problem is then formed (subject to the regular-
isation constraint, where l governs the level of regularisation, and kernel Principle Component Analysis (PCA) removes the
trivial solution),
min
WTKHKW¼I

¼
XC
c¼0

tr WTKMcKW
� �

þ ltr WTW
� �

ð5Þ
where H ¼ I� 1= Ns þ Ntð Þ1 is the centring matrix, I is an identity matrix and 1 a matrix of ones. Using a Lagrangian approach
the optimisation problem can be formed as an eigenvalue problem where the optimal weights W are obtained from the
eigenvectors corresponding to the k smallest eigenvalues from,
K
XC
c¼0

McK þ lI

 !
W ¼ KHKW/: ð6Þ
Due to the pseudo-labelling of the target features, [15] recommends running several iterations of the optimisation to find
the optimal W. A k-dimensional transformed feature space can be calculated by Z ¼ KW 2 R NsþNtð Þ�k, and a classifier trained
on the transformed source data can be applied to the transformed target data.



10 P. Gardner et al. /Mechanical Systems and Signal Processing 149 (2021) 107142
3.2. Homogeneous populations

A homogenous population is one in which the label spaces will be consistent, as stated in Table 1, and depending on the
feature utilised, may also have consistent feature spaces. This makes homogenous populations an ideal scenario for applying
JDA, and demonstrating the benefits of transfer learning. This section presents a homogenous population of two five-storey

shear structures, as depicted in Fig. 4. For both structures, the stiffness elements kif g5i¼1 are constructed from the summation
of the tip stiffness of four rectangular cantilever beams in bending i.e. 4kb, presented in Fig. 4b, where damage is applied to
one beam of the four beams at a given degree-of-freedom, in the form of an open crack using the reduction in stiffness model
from [35]. The geometric and material properties are nominally the same and are shown in Table 3.

The two structures are a homogeneous population as they are topologically3 and structurally4 equivalent [2] in their
lumped-mass representation and the material and geometry parameters can be defined by a unimodal distribution with low
dispersion. The SHM problem SP considered here is a localisation problem, where a crack that is 10% of the beam width is
applied at a distance 15% of the beam length from the base of the beam. This damage scenario is simulated for each of the
degrees-of-freedom meaning that there are six labelled scenarios: undamaged labelled ‘1’, damage at k1 labelled ‘2’, damage
at k2 labelled ‘3’, damage at k3 labelled ‘4’, damage at k4 labelled ‘5’, and damage at k5 labelled ‘6’, i.e.
Ys ¼ Yt 2 1;2;3;4;5;6f g. The features considered in this case study, depicted in Fig. 5, are the five damped natural frequencies
(X s ¼ X t) meaning Xs 2 RNs�5 and Xt 2 RNt�5, where Ns ¼ 1800 and Nt ¼ 1200 and each class has an equal weighting of data
points. In order to test the inferred mapping, a separate test dataset from the target domain was obtained where
Xtest 2 RNtest�5 and Ntest ¼ 1500, again where each class has an equal number of data points. It can be seen from Fig. 5 that there
is a shift in the damped natural frequencies from the source to the target domain (in the south-west direction) highlighting the
need for transfer learning. It is noted that Fig. 5 shows two-dimensional visualisations of the five-dimensional feature space
where each quadrant is a comparison of two features, i.e. the top right is a comparison of the fifth and first damped natural
frequencies – this format for displaying feature spaces is utilised throughout this paper. JDA was implemented with ten itera-
tions, a linear kernel, and a k-Nearest Neighbour (k-NN) classifier (five neighbours), such that the emphasis is on the domain
adaptation mapping and not the classifier. Cross-validation (using five-folds) was implemented in order to identify the
regularisation parameter, l ¼ 1� 10�3, and the number of transfer components, k ¼ 4. The inferred mapping is presented in
Fig. 6, where it can be seen that the source and target datasets have been successfully mapped onto each other, where the his-
tograms of the marginal distributions are shown on the diagonal. The classification results are given in Table 4, where it can be
seen that compared to a kNN without JDA, domain adaptation provides a substantial improvement in classification
performance.
3.3. Heterogeneous populations: geometric and material differences and consistent label spaces

The first heterogeneous population case study considers a population with geometry and material differences where the
label space between the source and target domain are consistent. The two structures in the population are structurally
equivalent and are both five-storey shear structures (Fig. 4). The material differences exist as the first structure is steel
and the other aluminium; the geometric dissimilarities occur due to differences in the dimensions of the structure, displayed
in Table 5. The SHM problem SP is the same as in the homogeneous case study i.e. a six-class localisation problem, i.e.
Ys ¼ Yt 2 1;2;3;4;5;6f g, where damage is introduced as open cracks located at each degree-of-freedom. The features are
the five damped natural frequencies (X s ¼ X t) such that Xs 2 RNs�5 and Xt 2 RNt�5;Xtest 2 RNtest�5;Ns ¼ 1800;Nt ¼ 1200 and
Ntest ¼ 1500 all with equal weighting of data points in each class. The source and target domain features are presented in
Figs. 7 and 8, the magnitudes of which are very different highlighting the need for transfer learning.

In a similar manner to the homogeneous case study, JDA was implemented with ten iterations, a linear kernel
and a kNN classifier (five neighbours). Cross-validation (using five-folds) identified the regularisation parameter,
l ¼ 1� 10�3, and number of transfer components, k ¼ 4. The identified transfer components from the JDA mapping
are depicted in Fig. 9, where the mapping has grouped the source and target domain clusters correctly together;
although the source and target domains are less close than in the homogeneous population example. Once more,
domain adaptation in the form of JDA, shows vast improvements in classification performance when compared to
training a classifier on the source domain and applying it to the target, which has a classification performance equiv-
alent to random guessing, as demonstrated in Table 6. This case study demonstrates that for a selection of hetero-
geneous problems, homogeneous transfer learning, in the form of domain adaptation, is still applicable. As a result,
PBSHM scenarios that can be formed as feature and label consistent, are achievable with current transfer learning
technologies.
3 Topologically-equivalent structures are those with the same graphical representation. In terms of IE and AGs, two graphs are topologically-equivalent if the
underlying unattributed graphs are identical.

4 Structurally-equivalent structures are those with the same graphical representation with the same locations of ground nodes. In terms of IE and AGs, two
graphs are structurally equivalent if they are topologically equivalent with ground nodes in the AGs occurring in the same place.



Fig. 4. Schematic of the five degree-of-freedom shear structure. Panel (a): Schematic of the full system. Panel (b): Schematic of the cantilever beam
component where kif g5i¼1 ¼ 4kb i.e. the stiffness coefficients in (a) are generated from four times the tip bending stiffness in (b).
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3.4. Heterogeneous populations: topological differences and inconsistent label spaces

A significant challenge in PBSHM is performing damage identification on populations with inconsistent label spaces,
i.e. Ys – Yt . However, it may be the case that a subset of the label space from the source and target structures could be con-
sidered consistent; for example if considering a damage localisation problem for a population of building structures with a
different number of storeys, e.g. a three-storey and a five-storey structure, then a set of the localisation labels are physically
equivalent, e.g. the labels about damage located in first three storeys from both structures would exist in both the source and
target domains. In these scenarios the challenge is determining what subset of the label space is consistent, which can be
particularly difficult as data from the target structure are often unlabelled or at best partially labelled – typically with labels
only being available for the undamaged condition. Again, this issue highlights the need for identifying similarities between
structures, particularly in terms of matching label spaces. This consideration provides additional motivation for the devel-
opment of an IE and AG approach in [2], where structural similarities (and therefore matching label spaces) can be found
for a given SHM problem SP. This section explores and develops an approach for performing domain adaptation in these
scenarios.

It is helpful to formalise the requirements on transfer learning in these scenarios with mathematical notations such that
the problem is made specific. Each structure will have a label space Y composed from the possible damage states being con-
sidered by the SHM problem, SP. In these scenarios it is assumed that there is a common subset of labels Ysub that occur in
both the source Ys and target Yt label spaces, i.e. Ysub 	 Ys and Ysub 	 Yt . A special case occurs when the common subset of
the label space is equal to the source label space, i.e. Ys 	 Yt , called the (Lþ N)-problem; as N extra labels are present in the
target domain that are not found in the source domain. In this scenario all the information from the source domain should be
transferred to the target domain, aligning the source labels to their equivalent target labels with the remaining N labels being
left ‘unpaired’ with the source domain. The simplest form of this problem is the scenario where the target label space is
equivalent to the source label space with the addition of an extra class, i.e. Yt 2 Ys;Yþ1f g; this is referred to as an (Lþ 1)-
problem. These scenarios demonstrate that, for some local set, the label space between the source and target structures
may be considered consistent and transfer learning, although challenging, is achievable.

In terms of PBSHM, heterogeneous populations, where individual structures are not topologically (or structurally) equiv-
alent, lead to inconsistency in the label space for a damage localisation problem. In keeping with the shear structure illus-
trations, an (Lþ N)-problem could be formed by considering a source structure with three-storeys where the label space is
Ys 2 1;2;3;4f g (i.e. ‘1’ is undamaged and ‘2’ to ‘4’ represent damage at each of the three storeys) and a target structure with
Table 3
Properties of the source and target structures for the homogenous population case study.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 5000:0; 350:0; 350:0f g 4999:0; 351:2; 349:7f g
Mass geometry, lm; wm; tmf g mm 12000:0; 12000:0; 350:0f g 12001:0; 11998:8; 351:6f g
Elastic modulus, E GPa N 210:00; 1� 10�9

� �
N 210:89; 1� 10�9
� �

Density, q kg=m3 N 8000:0; 50ð Þ N 8019:4; 10ð Þ
Damping coefficient, c Ns=m G 8:0000; 0:8ð Þ G 7:9981; 0:8ð Þ



Fig. 5. Subset of source and target domain features (every tenth data point) for the homogeneous population case study (where damped natural frequencies
are in Hz). The source domain data are denoted by (�), the target-domain training and testing data are denoted by þð Þ and 
ð Þ respectively.
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N-storeys where the label space is Yt 2 1;2;3;4; . . . ;N þ 1f g (where labels ‘5’ to ‘N þ 1’ refer to damage at storeys not phys-
ically present in the source domain). An (Lþ 1)-problem could be a scenario where the source structure is a three-storey
structure and the target is a four-storey structure, meaning Ys 2 1;2;3;4f g and Yt 2 1;2;3;4;5f g. As stated the mapping
problem becomes more complex and prone to negative transfer as the source and target labels spaces are considered increas-
ingly inconsistent. For this reason the examples presented in this case study are all (Lþ 1)-problems where a novel proce-
dure is proposed for performing domain adaptation for this specific scenario.

It is worth noting that the IE and AG representation of structures in [2] provides a natural way of expressing the consis-
tency of the label spaces. This is because a label set is attached to each node and edge of the attributed graph. As a conse-
quence, for a given SHM problem SP, a graph matching algorithm can be used to identify the level of label space agreement,
where an ideal scenario for a heterogeneous population is that they produce problems that are (Lþ N) in nature.

The novel procedure proposed in Algorithm 1 is designed for an (Lþ 1)-problem. In terms of the source and target data-
sets, the approach assumes a fully labelled source domain where feature examples are present for each class label, and that
the target domain is unlabelled but separable enough to perform unsupervised clustering such that unlabelled clusters can
be identified (where the true label for each cluster remains unknown before transfer). The approach subsequently assumes
that there are geometrical similarities between the feature data relating to the L-label space in both the source and target
datasets. This means that the mapping between the corresponding L labels in the source and target domain should be ‘closer’
than the complete source dataset to data from a different set of L labels in the target domain — this can be thought of as a
naive form of manifold assumption, i.e. it is expected that the manifold of the source and target clusters is the ‘same’. The
algorithm identifies Lþ 1 clusters in the target domain (through an unsupervised clustering approach), it then iterates
through each of the L combinations of clusters (in a leave-one-out sense), inferring the JDA mapping for each unique set
of clusters and calculating the MMD distance of the mapping — using tr WTKMcKW

� �
— in the transformed space5. The com-

bination of L target clusters that produce the smallest MMD distance are then assumed to be the matching label space to the
source domain. At this stage, the complete source and target datasets are projected through the inferred mapping and an unsu-
5 It is noted that the number of transfer components should be the same for each JDA mapping, such that the MMD distance is calculated for domains of the
same dimension.



Fig. 6. Subset of transfer components for the source and target domains (every tenth data point) in the homogeneous population case study. The source
domain transfer components are denoted by (�), the target-domain training and testing transfer components are denoted by þð Þ and 
ð Þ respectively.

Table 5
Properties of the source and target structures for the heterogeneous population case study with geometric and material differences.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 5000; 350; 350f g 4300; 500; 500f g
Mass geometry, lm; wm; tmf g mm 12000; 12000; 350f g 10000; 10000; 500f g
Elastic modulus, E GPa N 210; 1� 10�9

� �
N 71; 75� 10�7
� �

Density, q kg=m3 N 8000; 10ð Þ N 2700; 2:5ð Þ
Damping coefficient, c Ns=m G 50; 0:1ð Þ G 8; 0:8ð Þ

Table 4
Classification results for the homogenous population case
study trained on the labelled source domain and applied to
the unlabelled target domain.

Method kNN JDA

Mapping Training Accuracy 83.8% 100.0%
Mapping Testing Accuracy 83.9% 100.0%
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pervised clustering algorithm is used to cluster the source and target datasets in the transformed space; where the source data
should align with the correct L-target domain clusters, where the extra target domain cluster remains unlabelled. At this stage
the unsupervised clustering labels can be matched to the L-source labels, where L identified unsupervised clusters are given the
source label with which they are in most correspondence.



Fig. 7. Subset of source domain features (every tenth data point) for the heterogeneous population case study with geometric and material differences
(where damped natural frequencies are in Hz).
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Algorithm1 MMD approach to the (Lþ 1)-problem
Ypred
t ¼ CLUSTER Xtð Þ . Find Lþ 1 clusters in Xt
for i ¼ 1 : Lþ 1 .For the number of clusters in the target domain� �

Xsub
t ¼ Xt Ypred

t – i .Select target data for L clusters� �

Ksub ¼ KERNEL Xs;X

sub
t .Embed the source and subset of target data in a kernel� �
W;Mcf g ¼ JDA Ksub;Ys; k;l .Find weights and MMD matrix from JDA mapping
K ¼ KERNEL Xs;Xtð Þ .Embed the source and complete target datasets in a kernel

Z i½ � ¼ KW .Calculate the transfer components� �

mmd i½ � ¼ tr WTKsubMcK

subW .Calculate the MMD distance for the ith mapping
end for

n ¼ min mmdð Þ .Find the minimum MMD distance

Zopt ¼ Z n½ � .Find the ‘optimal’ mapping
Ypred ¼ CLUSTER Zopt ;Ys
� �

.Find Lþ 1 clusters from transformed data
The effectiveness of the proposed approach is demonstrated on several examples of the (Lþ 1)-problem. These examples
help illustrate the limitations of the assumption that the feature data for the L clusters between the source and target data-
sets are geometrically similar. This demonstrates when the approach is applicable and motivates further research required to
solve SHM problems for general heterogeneous populations. All of the following examples consider populations of an n- and
anm-storey structure, where the SHM problem SP is the localisation of open cracks (10% of the beamwidth at a distance 15%
of the beam length) at each storey. Unless otherwise stated, the properties of the structures are shown in Table 7 where the
differences between each member of the population are solely the number of storeys. It is noted that the clustering algo-



Fig. 8. Subset of target domain features (every tenth data point) for the heterogeneous population case study with geometric and material differences
(where damped natural frequencies are in Hz). The target-domain training and testing data are denoted by þð Þ and 
ð Þ respectively.
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rithm implemented here is a Gaussian Mixture Model (GMM) [36], although other methods could also be used. JDA is imple-
mented with ten iterations, where pseudo-labelling is performed using a kNN, where other parameters are stated depending
on the application.
3.4.1. Three-storey to three-storey: missing cluster
The first demonstration of Algorithm 1 is for the scenario where Ys ¼ Yt , but feature data for a single class label is not

present in the source domain. This situation represents a form of the (Lþ 1)-problem where the assumption of geometric
similarity of the feature data for the source and target domain holds, as the two labels spaces are equal. In this example
the source and target structures have different geometries and material properties (and are therefore a heterogeneous pop-
ulation), stated in Table 8, but are topologically-equivalent; both being three-storey shear structures. In order to generate an
(Lþ 1)-problem, the cluster associated with damage at the second storey is considered not available for the source domain.
The label sets are Ys 2 1;2;4f g and Yt 2 1;2;3;4f g, and it can therefore be considered that the label sets are inconsistent
(where ‘1’ is the undamaged class and labels ‘2’ to ‘4’ relate to damage at each degree-of-freedom i.e. ‘2’ denotes damage
between the ground and first storey etc.). The first two damped natural frequencies of the self-normalised source and target
domains are presented in Fig. 10a highlighting the differences in the label spaces. It is noted that
Xs 2 R

Ns�3; Xt 2 R
Nt�3; Xtest 2 R

Ntest�3 (i.e. the first three damped natural frequencies are used) where Ns ¼ 900; Nt ¼ 800
and Ntest ¼ 1000 (where each class has an equal weighting of data points).

Algorithm 1 aims to select the combination of target domain clusters that produce the smallest MMD distance — assum-
ing that this set of target domain clusters will produce positive transfer. An unsupervised GMM (where the number of clus-
ters was four) was used to cluster the target domain such that unique combinations of clusters could be implemented in
inferring the JDA mappings (using a linear kernel, where k ¼ 2 and l ¼ 0:5). Fig. 10b states the MMD distances when each
cluster has been removed (in a leave-one-out sense), where it can be seen that the MMD is smallest when cluster ‘3’ is
removed from the target domain — showing that the algorithm’s assumptions hold for this problem. To illustrate the JDA
mappings, two examples are presented in Fig. 11, where the JDA mappings that produce the largest and smallest MMD dis-
tances are shown; i.e. when cluster ‘2’ is removed and cluster ‘3’ respectively. It is clear that Fig. 11a illustrates negative
transfer has occurred, which is expected as a different combination of labels are present in the source and target domains.



Table 6
Classification results for the heterogeneous population case
study with geometric and material differences trained on the
labelled source domain and applied to the unlabelled target
domain.

Method kNN JDA

Mapping Training Accuracy 16.7% 100.0%
Mapping Testing Accuracy 16.7% 100.0%

Table 7
Properties of the source and target structures for the heterogeneous population case study with topological differences.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 5000; 500; 500f g 5000; 500; 500f g
Mass geometry, lm; wm; tmf g mm 12000; 12000; 500f g 12000; 12000; 500f g
Elastic modulus, E GPa N 210; 1� 10�9

� �
N 210; 1� 10�9
� �

Density, q kg=m3 N 8000; 10ð Þ N 8000; 10ð Þ
Damping coefficient, c Ns=m G 50; 0:1ð Þ G 50; 0:1ð Þ

Fig. 9. Subset of transfer components for the source and target domains (every tenth data point) in the heterogeneous population case study with
geometric and material differences. The source domain transfer components are denoted by (�), the target-domain training and testing transfer components
are denoted by þð Þ and 
ð Þ respectively.
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In contrast, Fig. 11b shows positive transfer, and that the source and target data are placed closer than in Fig. 11a — therefore
validating the assumptions of Algorithm 1. It is interesting to note that in Fig. 11b the cluster not utilised in the mapping, i.e.
class ‘3’, has been placed near the origin. This placing is helpful in producing separable clusters in the transformed domain,
where the unsupervised GMM (with four components) trained on the source and target transformed space has correctly
identified four unique clusters, as shown in Fig. 12. The identified unlabelled clusters are given the labels of the source



Table 8
Properties of the source and target structures for the three-storey to three-storey case study.

Property Unit Source Target

Beam geometry, lb; wb; tbf g mm 5000; 500; 500f g 6000; 400; 400f g
Mass geometry, lm; wm; tmf g mm 12000; 12000; 500f g 11000; 11000; 400f g
Elastic modulus, E GPa N 200; 1� 10�9

� �
N 210; 1� 10�9
� �

Density, q kg=m3 N 8000; 10ð Þ N 7800; 10ð Þ
Damping coefficient, c Ns=m G 50; 0:1ð Þ G 25; 0:2ð Þ

Fig. 10. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the three-
storey to three-storey case study. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the target domain.

Fig. 11. Examples of JDA mapping for the three-storey to three-storey case study. Panel (a): Subset of normalised first and second natural frequencies for
the target domain (every fifth data point) where cluster ‘2’ is removed (left) and JDA mapping (right). Panel (b): Subset of normalised first and second
natural frequencies for the target domain (every fifth data point) where cluster ‘3’ is removed (left) and JDA mapping (right).
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domain data within the cluster, resulting in 100% classification accuracy of the known L-label sets in the training-target and
test-target datasets, and the target domain data relating to class ‘3’ is completely captured by its own Gaussian cluster.

3.4.2. Three-storey to four-storey: labelling from the fixed end
In order to demonstrate the applicability of Algorithm 1 to an (Lþ 1)-problem where Ys – Yt a second example is pre-

sented. In this example the SHM problem is performing damage localisation between a three- (source) and a four- (target)
storey shear structure — a heterogeneous population that is not topologically-equivalent, where its geometric and material



Fig. 12. Unsupervised GMM trained on the ‘optimal’ JDA transfer components for the three-storey to three-storey case study.
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properties are shown in Table 7. The two label spaces are therefore Ys 2 1;2;3;4f g and Yt 2 1;2;3;4;5f g where the labels
are: undamaged class ‘1’ and labels ‘2’ to ‘5’ relate to damage at each degree-of-freedom numbered from the fixed end
upwards (i.e. damage between the ground and first storey is labelled ‘2’, etc.). Labelling has been performed from the fixed
end upwards as it is assumed that the ground boundary condition is most important for physical correspondence between
the two structures. In order to keep the feature space consistent the first three damped natural frequencies are used as fea-
tures, meaning Xs 2 RNs�3 and Xt 2 R

Nt�3; Xtest 2 R
Ntest�3; Ns ¼ 1200; Nt ¼ 1000 and Ntest ¼ 1250 (where each class has an

equal weighting of data points). The (self-normalised) first two damped natural frequencies are presented in Fig. 13a, show-
ing the inconsistent label spaces.

The MMD distances for each JDA mapping (using a linear kernel, where k ¼ 2 and l ¼ 0:5) are displayed in Fig. 13b; it can
be seen that the scenario where data referring to label ‘5’ are removed from the target domain produces the smallest MMD
distance. This JDA mapping is shown in Fig. 14a where positive transfer has occurred — again it is interesting to note that the
JDA mapping places the target cluster relating to label ‘5’ near the origin, which is intuitive as this cluster was not used in
learning the JDA mapping. Again, an unsupervised GMM (Fig. 14b) trained on the source and target transformed data cor-
rectly classifies the L-label sets from the training-target and test-target datasets (when assuming that the cluster label is
obtained from the source domain data). As with the previous example, the extra target cluster (label ‘5’) is completely cap-
tured by its own Gaussian cluster.
3.4.3. Four-storey to five-storey: labelling from the fixed end
Algorithm 1 has been demonstrated on two (Lþ 1)-problem case studies where the assumption holds, that there are geo-

metric similarities in the cluster space for the L-labelled datasets from the source and target domains. In this next scenario,
the algorithm is applied to a damage localisation problem between a four- (source) and five- (target) storey shear structure
(with properties shown in Table 7). For the same reasons as Section 3.4.2 the first four damped natural frequencies are uti-
lised as features such that Xs 2 RNs�4 and Xt 2 R

Nt�4; Xtest 2 R
Ntest�4; Ns ¼ 1500; Nt ¼ 1200 and Ntest ¼ 1500 (where each class

has an equal weighting of data points). Again, the label space is numbered from the fixed end upwards, meaning
Ys 2 1;2;3;4;5f g and Yt 2 1;2;3;4;5;6f g, where, for example, ‘2’ refers to damage at k1. The (self-normalised) source and
target datasets are depicted in Fig. 15a, where it can be seen that the geometry in the datasets between the L-labels (i.e.
‘1’ to ‘5’) is not similar — i.e. rotations and translations of the source L clusters would not bring all the clusters equally close
to the L-target clusters — meaning the algorithm is not expected to select the correct L clusters in the target domain, and
therefore is unlikely to perform positive transfer.

The MMD distances for each JDA mapping (using a linear kernel, where k ¼ 2 and l ¼ 10), trained on each combination of
target clusters, are shown in Fig. 15b. It is clear that the minimum MMD distance does not occur in the correct scenario, i.e.
when cluster ‘6’ is removed from the target dataset. In fact, in this example, all of the JDA mappings produce negative trans-
fer; Fig. 16 shows two JDA mappings, where cluster ‘3’ (corresponding to the smallest MMD distance) and ‘6’ (corresponding
to the correct L-label set) are removed from the target dataset respectively. In both these cases JDA struggles to overcome the
changing nature of the geometry of the clusters in the source and target domain, mainly due to the fact that no label knowl-



Fig. 13. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the three-
storey to four-storey case study: labelling from the fixed end. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the
target domain.

Fig. 14. Panel (a): Subset of normalised first and second natural frequencies for the target domain (every fifth data point) where cluster ‘5’ is removed (left)
and JDA mapping (right). Panel (b): Unsupervised GMM trained on the ‘optimal’ JDA transfer components for the three-storey to four-storey case study:
labelling from the fixed end.
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edge is known in the target domain, meaning that the inferred mapping cannot be pinned on the correct target clusters. For
this example, Algorithm 1 has been demonstrated to fail; any classification result will be erroneous due to negative transfer.

This result indicates that the approach will not generalise for (Lþ 1)-problems across any combination of different storey
shear structures, as the assumptions about the geometry of the cluster spaces is broken. This caveat means that care must be
taking in applying Algorithm 1 to general SHM problems and highlights the issues with a fully black-box approach to transfer
learning for PBSHM.
3.4.4. Two storey to three storey: labelling from the fixed end
Further investigation of the applicability of Algorithm 1 was performed with a two- (source) to three- (target) storey pop-

ulation (using the properties in Table 7). The motivation for this example is that physically, natural frequencies will become
less sensitive to location specific damage (especially when solely affecting the stiffness at a particular degree-of-freedom),
particularly at degrees-of-freedom near the free end — due to low amounts of strain energy — as the number of storeys
increases.

The feature space represents the first two damped natural frequencies, meaning Xs 2 RNs�2 and
Xt 2 R

Nt�2; Xtest 2 R
Ntest�2; Ns ¼ 900; Nt ¼ 800 and Ntest ¼ 1000 (where each class has an equal weighting of data points).

Once more, the labels Ys 2 1;2;3f g and Yt 2 1;2;3;4f g, are assigned from the fixed end upwards. Fig. 17a, again indicates



Fig. 15. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the four-
storey to five-storey case study: labelling from the fixed end. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the
target domain.

Fig. 16. Examples of JDA mapping for the four-storey to five-storey case study: labelling from the fixed end. Panel (a): Subset of normalised first and second
natural frequencies for the target domain (every fifth data point) where cluster ‘3’ is removed (left) and the JDA mapping (right). Panel (b): Subset of
normalised first and second natural frequencies for the target domain (every fifth data point) where cluster ‘6’ is removed (left) and the JDA mapping (right).
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that the assumptions in Algorithm 1 are not applicable to this problem. Fig. 17b confirms this result, as the removal of cluster
‘2’ from the target domain produces a closer mapping than removing cluster ‘4’ (where all JDA mappings are inferred using a
linear kernel, where k ¼ 1 and l ¼ 0:5). However, when cluster ‘4’ is removed from the target domain, positive transfer
occurs. In fact, when the JDA mapping, inferred from the target domain without cluster ‘4’, is used to train a GMM (shown
in Fig. 18), classification accuracies of 99.9%, 98.9% and 98.1% are achieved (for the source, training-target and test-target
datasets respectively). This observation highlights the fact that, although the MMD distance has failed as a criterion for
selecting the correct mapping, due to the invalidation of the assumptions in Algorithm 1, in theory another metric may work.
The problem with using an alternative metric is that the target domain is unlabelled, and therefore very little is actually
known about the structure of the target domain data beyond basic geometric assumptions — as assumed by Algorithm 1.

It is noted at this point that the labelling strategies utilised for the previous examples have all assumed that the most
important information for consistently labelling the two topologically different structures is to begin from the ground
boundary condition upwards. An alternative labelling strategy is also possible by taking a different view of the physics. This
strategy assumes that damage located between the ground and first storey will be the most distinguishable cluster when
using natural frequencies as a feature. In addition, the free end boundary condition on the top storey is consistent between
any n andm storey shear structure. This observation means that a strategy that labels the damage locations from the free end
downwards is equally valid, where the extra label will be given to damage between the ground and first floor in the target



Fig. 17. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the two-
storey to three-storey case study: labelling from the fixed end. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the
target domain.

Fig. 18. GMM results trained on the JDAmapping when cluster ‘4’ is removed. The colours represent the predicted labels and the symbols represent the true
class; where �ð Þ is label ‘1’, /ð Þ is label ‘2’, Mð Þ is label ‘3’, rð Þ is label ‘4’.
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structure. This poses a challenge in determining which labelling strategy to use more generally for heterogeneous popula-
tions. The following examples consider the change in effectiveness of Algorithm 1 for the alternative labelling strategy,
where damage locations are numbered from the free end downwards.

3.4.5. Two-storey to three-storey: labelling from the free end
An alternative labelling strategy, where the damage localisation labels begin from the free end downwards, is investi-

gated for the two- (source) to three- (target) storey scenario. In this example the properties of the structure are the same
as in Section 3.4.4, where the first two damped natural frequencies are used as features, with the same number of data points
as Section 3.4.4. The only difference in this example, is that the label spaces Ys 2 1;2;3f g and Yt 2 1;2;3;4f g are assigned
from the free end downwards, i.e. undamaged class is ‘1’ and labels ‘2’ to ‘3’ refer to damage from the free end downwards,
i.e. ‘2’ is damage at the top storey, where ‘4’ refers to damage located between the ground and first floor for the target struc-
ture. Fig. 19a presents the label space where the geometry of the clusters is now more consistent between the source and



Fig. 19. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the two-
storey to three-storey case study: labelling from the free end. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the
target domain.

22 P. Gardner et al. /Mechanical Systems and Signal Processing 149 (2021) 107142
target domains, meaning Algorithm 1 should become applicable. Fig. 19b demonstrates that this is the case, with the small-
est MMD distance coming from the scenario where the ‘4’ cluster is removed from the target domain (where the JDA map-
pings have been inferred using a linear kernel, where k ¼ 1 and l ¼ 0:5). In fact, it is interesting to note that Fig. 19b is a
reordering of the distances from Fig. 17b, which is expected as they refer to the same JDA mappings but with the labels
changed.

The JDA mapping — inferred when cluster ‘4’ is removed from the target domain — is shown in Fig. 20a, where a GMM has
been trained on the transformed space. Fig. 20a illustrates that although positive transfer has occurred (the correct L-clusters
are ‘close’ to each other), the mapping has not placed cluster ‘3’ from the source and target domains close enough together in
the transformed space to make it separable from the undamaged cluster (labelled ‘1’) in the target domain. This is partly due
to JDA being a dimensionality reduction tool, meaning the space reduces from two to one dimension, where Gaussian dis-
tributions in one-dimensional space will often be difficult to separate. For this example, the source domain has remained
relatively separable in the transformed space, leading to a high classification accuracy of 99.1%, with relatively little confu-
sion as shown in Fig. 20b. However, the transformed target domain is less separable, leading to classification accuracies of
76.6% and 76.0% (for the training-target and test-target datasets respectively), where confusion has occurred by labelling
most of class ‘3’ as class ‘1’, as demonstrated in Fig. 20c and 20d. This example shows that, although the alternative labelling
strategy does result in the correct combination of target clusters being used for transfer, and that positive transfer does
occur, the mapping does not provide enough separability for classification. It is noted that class separability could be
improved with additional machine learning tools. Alternatively, given a particular condition on separability of the clusters
for learning, training sets could be drawn from the lower bound on damage extents for each location, which may potentially
aid separability in low damage examples; however, the problem of class separability is not pursed here as it is not the focus
of this paper.
3.4.6. Three-storey to four-storey: labelling from the free end
In order to assess the effectiveness of the alternative labelling strategy the same approach as in Section 3.4.5 was applied

to the three- (source) to four- (target) storey scenario from Section 3.4.2, i.e. label ‘1’ is undamaged and label ‘2’ corresponds
to damage at the top storey etc. The source and target datasets are depicted in Fig. 21a. Here the geometry of the L-clusters
changes between the source and target domain, invalidating the assumption in Algorithm 1. This results in the algorithm
producing a minimum MMD distance for the JDA mapping (using a linear kernel, where k ¼ 2 and l ¼ 0:5) inferred from
the incorrect set of target clusters, as shown in Fig. 21b (where again Fig. 21b is a reordering of Fig. 13b). As expected even
when the correct L-clusters are selected from the target domain, negative transfer occurs. This example provides additional
evidence that the algorithm’s assumptions are too strong for the general n- tom-storey shear structure problem. It also high-
lights that the labelling strategy is important in creating a successful JDA mapping, and that labelling from the free and fixed
end both produce problems as physical correspondence of localisation labels is difficult to definitely determine.
3.4.7. Four-storey to five-storey: labelling from the free end
The last example in Section 3.4 utilises the free end labelling strategy on the four- (source) to five- (target) storey (Lþ 1)-

problem from Section 3.4.3; labelling from the free end downwards i.e. label ‘1’ is undamaged and label ‘2’ corresponds to
damage at the top storey etc., where the target domain has an extra label ‘6’ that corresponds to damage between the ground



Fig. 20. Panel (a): GMM results trained on the JDA mapping where the colours represent the predicted labels and the symbols represent the true class;
where �ð Þ is label ‘1’, /ð Þ is label ‘2’, Mð Þ is label ‘3’, rð Þ is label ‘4’. Panel (b), (c) and (d) are the resulting confusion matrices for the source (b), target (c) and
test target (d) datasets.

Fig. 21. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the three-
storey to four-storey case study: labelling from the free end. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the
target domain.

P. Gardner et al. /Mechanical Systems and Signal Processing 149 (2021) 107142 23



24 P. Gardner et al. /Mechanical Systems and Signal Processing 149 (2021) 107142
and first floor. The label space is shown in Fig. 22a where once more the geometry of the L-clusters in the source and target
domain invalidate the assumption in Algorithm 1. This results in Fig. 22b, showing that the incorrect target cluster combi-
nation is selected by Algorithm 1 (where the JDA mapping uses a linear kernel, where k ¼ 2 and l ¼ 0:5). As with the exam-
ple in Section 3.4.4, it is interesting to note that if the correct combination of clusters from the target domain is selected,
positive transfer occurs, as demonstrated in Fig. 23b, when compared to the negative transfer that occurs in Fig. 23a; mainly
in source cluster ‘5’ being paired with target cluster ‘6’. This reiterates the argument that the MMD distance may not be the
best criterion in selecting the ‘optimal’ mapping. However, due to the lack of information about the target domain (i.e. it is
unlabelled) it is difficult to go beyond a distance criterion and the assumptions in Algorithm 1 without incorporating more
physical knowledge. These results therefore demonstrate the limitations of a black-box approach to transfer learning for
PBSHM, and motivate the need for leveraging as much physical information as possible in performing transfer learning. Phy-
sics might be introduced in the form of prior constraints on the mapping, better manifold assumptions on the data for each
domain elicited from the physics, or could involve utilising the physics to map the data onto a space where the geometric
properties of the clusters are consistent (making Algorithm 1 applicable after that stage).

3.5. Heterogeneous populations: from physics-based models to experimental structures

The final case study considers a population in which one member is formed from a numerical model and the other an
experimental structure. This highlights the potential within PBSHM to utilise computer models in labelling other members
of a population, potentially overcoming a significant SHM challenge, namely that damage-state data often have limited avail-
ability, as it is not feasible nor economically viable to damage a structure in various manners in order to collect data for a
machine learner. In this case study the labelled source domain is generated from a numerical simulation of a three-storey
shear structure (in the same manner as the previous case studies) where the target domain is an unlabelled experimental
structure, as depicted in Fig. 24.

The properties of the numerical model are presented in Table 9, where the dimensions are those measured from the struc-
ture, and the material properties and damping coefficients are estimated, given that the structure is made from aluminium
6082. The SHM problem SP is an extent problem6 where a midpoint saw cut (modelled as an open crack) is applied to a single
beam between the ground and first storey in 5 mm increments from 0 mm to 20 mm, meaning label ‘1’ corresponds to undam-
aged, ‘2’ to a 5 mm saw cut, ‘3’ to a 10 mm saw cut etc. The numerical model is deliberately oversimplified such that the case
study demonstrates the effectiveness of domain adaptation in utilising physics-based models, which are often challenging to
validate and may not fully agree with observational data due to model form-errors, in labelling real world structures. Conse-
quently, the population of the numerical model and experimental structure can be thought of as a heterogeneous population.
The feature spaces represent the first three bending natural frequencies meaning Xs 2 RNs�3 and Xt 2 RNt�3. The number of data
points in each class for the simulation were 250, meaning Ns ¼ 1250. The target domain data were obtained from modal testing
using an electrodynamic shaker attached to the first floor of the structure, where the acceleration response was measured from
three uni-axial accelerometers attached to each floor. For each damage extent, the structure was excited five times with a
6553.6 Hz broadband white-noise excitation containing 16384 spectral lines (0.2 Hz resolution) with a Hanning window on
the force excitation and acceleration response. The size of the complete target dataset was therefore Nt ¼ 25. The feature spaces
for the source and target domains are presented in Fig. 25, where the numerical model’s natural frequencies are around half
those of the structure, highlighting the need for transfer learning. JDA was applied to the source and target feature data, where
the inferred mapping and classification results are shown in Fig. 26 (where k ¼ 2 and l ¼ 1 identified from fivefold cross val-
idation). A kNN classifier (where k ¼ 4) trained on the source domain, was utilised in classifying the target domain in Fig. 26. The
improvement on not performing JDA (i.e. training a kNN on the source domain and applying it to the target domain) is shown in
Table 10, where accuracy increases from 48.0% to 88.0%. This highlights the effectiveness of utilising both physics-based models
and observational datasets within a PBSHM framework.
4. Discussion and conclusions

Knowledge transfer and mapping are important processes in developing a population-based approach to SHM. The idea of
mapping data from different structures within a population such that knowledge about health states is transferred, can be
achieved via transfer learning. It is important when applying transfer learning to determine what similarities exist between
structures within a population, and what information should be transferred, such that negative transfer is avoided. With this
aim in mind, it is helpful to categorise structures based on their differences. Here two main types of population within
PBSHM have been considered: homogenous populations and heterogeneous populations. Further to these two main categories,
three more subdivisions have been discussed for heterogeneous populations: geometry, material and topology. These sources
of dissimilarity form part of an Irreducible Element and Attributed Graph representation of structures [2].

By starting from what type of SHM problem is required, it is possible to categorise the level of consistency that exists for
each type of population. This helps define what assumptions are required for a given transfer learning method, and whether
6 It is noted that typically extent problems should be posed as regression problems, rather than classification problems. The extent problem here is solved as
a classification problem in order to demonstrate transfer learning in PBSHM and not intended to indicate best practice.



Fig. 22. Panel (a): Subset of normalised first and second natural frequencies for source (left) and target (right) domain (every fifth data point) for the four-
storey to five-storey case study: labelling from the free end. Panel (b): MMD distances from JDA mappings where one cluster has been removed from the
target domain.

Fig. 23. Examples of JDA mapping for the four-storey to five-storey case study: labelling from the free end. Panel (a): Subset of normalised first and second
natural frequencies for target domain (every fifth data point) where cluster ‘3’ is removed (left) and the first two components of the JDA mapping (right).
Panel (b): Subset of normalised first and second natural frequencies for target domain (every fifth data point) where cluster ‘6’ is removed (left) and the first
two components of the JDA mapping (right).
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homogenous or heterogeneous transfer learning should be implemented. Furthermore, label inconsistency between mem-
bers of the population will increase the likelihood of negative transfer. This issue shows the power of an Irreducible Element
(IE) and Attributed Graph (AG) representation of structures, as this approach means that similarities between members of
the population can be extracted, reducing the transfer learning problem to one in which labels are considered consistent.

Transfer learning, in the form of domain adaptation, has been demonstrated to be applicable for problems when both fea-
ture and label spaces are consistent. By defining the mapping problem within an SHM and population type context, several
PBSHM scenarios can be considered to fulfil these requirements. This paper has demonstrated that domain adaptation is
applicable for both a homogeneous population, and heterogeneous population context; where the geometric differences
are changes in dimensions and two different metallic materials are used.

When label spaces are considered inconsistent, such as damage localisation problems in heterogeneous populations
where topological differences occur, the risk of negative transfer increases, posing a significant challenge. This paper has out-
lined particular types of label inconsistency, namely an (Lþ N)- and (Lþ 1)-problem; where the source label space is a subset
of the target label space with N or 1 extra labels in the target label space respectively. For the (Lþ 1)-problem a novel MMD-
based algorithm has been proposed, based on an assumption of geometric similarities in the source and target datasets. This
approach has been demonstrated on several PBSHM examples involving a population of n- and m-storey structures. These



Fig. 24. Target domain structure: Experimental setup of three-storey building structure [4].
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examples have demonstrated the applicability of the novel approach in cases where the geometric similarities between the
source and target datasets occur. Unfortunately, outside of specific cases within a shear structure context, this assumption
breaks down, meaning a more complex approach is required. The examples shown in this paper motivate the need to go
beyond a black-box approach, as without more knowledge of the target space, domain adaptation is limited to assumptions
like that proposed in the novel approach. As a consequence, future research will investigate the potential for leveraging
physical knowledge of structures in mapping the observational feature sets from the source and target domains onto a con-
sistent manifold, where domain adaptation then becomes applicable. Without incorporating physical knowledge, there will
always be a danger of black-box domain adaptation performing negative transfer. In addition, these case studies highlighted
that labelling strategies will effect the outcome of any knowledge transfer. These issues should be pursed as part of further
research, such that any PBSHM approach is robust to the labelling strategy employed.

The final case study presented the potential for utilising physics-based models as part of a PBSHM dataset. Specifically, an
example has been shown where an unvalidated numerical model has been used to label an experimental structure. This
Table 9
Properties of the source structure for the heterogeneous population case
study mapping from a physics-based model to experimental structure.

Property Unit Source

Beam geometry, lb; wb; tbf g mm 177:8; 25:4; 6:35f g
Mass geometry, lm; wm; tmf g mm 304:8; 254:0; 25:4f g
Crack geometry, lcr ; llocf g mm 17:5; 88:9f g
Elastic modulus, E GPa N 71; 1� 10�9

� �
Density, q kg=m3 N 2700; 50ð Þ
Damping coefficient, c Ns=m G 9; 0:5ð Þ



Fig. 25. Source (left) and target (right) domain features for the heterogeneous population case study mapping from a physics-based model to experimental
structure (where damped natural frequencies are in Hz).

Fig. 26. Transfer components and classification results for the source and target domains in the heterogeneous population case study mapping from a
physics-based model to experimental structure. The labelled source domain transfer components are denoted by (�), the target-domain transfer components
are denoted by �ð Þ for the true label and �ð Þ for the predicted label respectively.
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result means that physics-based models can be leveraged in providing label knowledge not currently obtainable from real
world structures.

Finally, critical foundations of population-based SHM, namely in the use of transfer learning in performing knowledge
transfer between homogeneous and heterogeneous populations, have been defined. These foundations, show that for a
population-based approach to SHM, understanding the required SHM problem is crucial for determining the level of struc-
tural similarity required and in selecting the most effective transfer learning technology. The integration of an IE and AG-



Table 10
Classification results for the heterogeneous population case study mapping from a physics-based model to
experimental structure trained on the labelled source domain and applied to the unlabelled target domain.

Method kNN JDA

Target Accuracy 48.0% 88.0%
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based approach to quantifying knowledge about structures is therefore vital in understanding the effectiveness of transfer
learning in a PBSHM setting.
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