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A B S T R A C T

Data-driven approaches to Structural Health Monitoring (SHM) generally suffer from a lack
of available health-state data. In particular, for most structures, it is not possible to obtain a
comprehensive set of labelled damage data – even covering the most common damage types
– due to impracticalities and economic considerations in observing the structure in a range of
damage states. One solution to this problem is to utilise labelled data from a set of ‘similar’
structures. The assumption is that, as a population, the group may have a shared label set that
covers a wider range of damage states, which can be used in labelling a different structure
of interest. These goals, producing a model that generalises for a population of structures,
and transferring label information between structures, are part of a population-based view of
SHM — known as population-based SHM (PBSHM). By considering data from a population,
it is possible to make data-driven SHM practical in industrial contexts beyond unsupervised
learning, i.e. novelty detection. In order to realise the potential of PBSHM, this paper applies
a heterogeneous transfer learning method – kernelised Bayesian transfer learning (KBTL) –
which is a sparse Bayesian method that infers a discriminative classifier from inconsistent
and heterogeneous feature data, i.e. the dataset from each member of the population may
refer to different quantities in different dimensions. The technique infers a shared latent space
where data from each member of the population are mapped on top of each other, meaning
a single classifier can jointly be inferred that generalises to the complete population. As a
consequence, label information can be transferred in this shared latent space between members
of the population. The ability to infer a mapping from inconsistent and heterogeneous feature
data make the approach a heterogeneous transfer learning method. To the best of the authors
knowledge, this is the first time a heterogeneous transfer learning method has been applied in
an SHM context.

. Introduction

Conventional data-driven SHM seeks to infer a machine learner using data obtained from an individual structure (or system),
ith the aim of creating a model that will generalise to future measurements, enabling future predictions of the health-state of the

tructure. This type of approach to SHM has achieved many successes [1–4]; however, it suffers from several flaws. Firstly, as with
ny conventional machine learner, the assumption is that the underlying data distribution used in training the algorithm will be the
ame for any future measurements. This assumption means that if the structure is repaired, or if operational and environmental
onditions change the system’s fundamental behaviour, the assumptions in the machine learner are broken, and it will fail to
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generalise. Secondly, in order to make accurate health statements (beyond stating a particular observation is novel when compared
to a given baseline) some form of health-state labels are required. Typically, a variety of labelled data will be costly and potentially
infeasible to obtain for operational structures, meaning that there will be, at best, sparsity in the label set, and at worst, a large
portion of missing health-state labels. Semi-supervised learning can help with the label sparsity problem [5,6], expanding the existing
dataset by considering any unlabelled data from the structure, but it cannot (on its own) provide new class labels for health states
not observed on that structure. This sparsity in label data means that a conventional machine learner is not able to predict classes
that have not already been observed on the structure of interest — a significant drawback for conventional data-based approaches
to SHM which severely limits their application in real world scenarios. Lastly, even if a computer model was used to train the
machine learner (with the large assumption that it is possible to simulate all expected health states without model discrepancy), or
if a machine learner was trained on another structure with a more complete label set and applied to the structure of interest, both
of these machine learners will fail to generalise well, because of the first problem — machine learners assume the joint distribution
from which the data were obtained in training is exactly the same as in testing. In the light of these challenges, a new viewpoint is
proposed for the problem of SHM. This novel approach to SHM seeks to leverage label information across a population of structures
(both physical and simulated) in creating machine learning models that will generalise across the complete population, enabling
label information to be transferred from one member of the population to another, and is appropriately named Population-Based
Structural Health Monitoring (PBSHM), the foundation of which are set out in [7–9].

The first paper in this series on the foundations of PBSHM [7], introduces the field of PBSHM, defining homogeneous populations
and proposing the concept of a Form as a method for capturing the idealised response from a population, along with the associated
variation within the population. The second paper, [8], introduces the concept of heterogeneous populations and the notion of
determining similarities between structures in a population using an abstract graphical representation of structures. Within this
‘space of structures’ metrics can then be used to determine if any two members from a set of structures are similar enough that
knowledge could be shared between them. The final paper in the series [9], states that in order to transfer knowledge between
structures in a population, transfer learning can be utilised, with an outline of when transfer should be attempted given an SHM
problem ().

To illustrate the ideas behind PBSHM, a short example is provided. Imagine a scenario in which an asset manager for a train
company is interested in performing SHM across their fleet of trains, which forms the population. This population may be composed
of trains all of the same model type and specifications, making each member of the population nominally identical and being defined
as a homogeneous population. More commonly, the population is likely to be formed of a range of trains, with differing model types
and specifications, defined as a heterogeneous population; however, it is still expected that some failure types will be common across
the population. The asset manager is tasked with maintaining and monitoring the complete population; however, for some members
of the population, little or no health-state information is available, apart from the normal healthy condition (which is especially true
for new trains that have recently been purchased). This sparsity in label data makes conventional approaches to data-based SHM
impractical, outside of novelty detection, which still leaves the problem of what ‘novel’ refers to (be it benign changes or damage
related). However, it is likely that the asset manager will have data from across the fleet that cover the majority of common failure
types. In fact, they may even have access to relatively good damage simulations for particular trains from physics-based models,
meaning simulated data points of certain health states are attainable. The asset manager, therefore, requires a population-based
approach to SHM, where the information across the population is used to create a machine learner that will both generalise across
the population and will allow label information to be transferred to any train in the fleet, allowing robust health diagnosis for all
trains in the population. This paper will seek to address this scenario by utilising a sparse Bayesian discriminative classifier that
seeks to pull information from across multiple structures in creating a generalised model, namely KBTL, proposed by Gönen and
Margolin [10].

Within the theory of PBSHM, it is critical that algorithms are able to infer a map between features from different structures
in the population, enabling information to be transferred from structure to structure. This goal aligns closely with a branch of
machine learning called transfer learning, that seeks to infer a model even when the feature data distributions for each structure are
different, and can include scenarios where the label information is different [11–13]. The approach applied in this paper, KBTL [10],
is a sparse Bayesian model that seeks to learn a classifier that generalises for multiple different datasets, which in this context are
from members of the population, and has the ability to transfer label information between these structures. The application of this
technique is particularly novel in an SHM context, as it allows each member of the population to have a different feature set, i.e. the
dimension of each feature set from each structure is different, which is called feature inconsistency. This property means that KBTL
is a form of heterogeneous transfer learning 1 [13–15]. Heterogeneous transfer learning therefore allows a wider range of datasets and
structures to be considered in the same population, relaxing the constraint in homogeneous transfer learning that the feature sets
for each structure are of the same dimension. For example, in heterogeneous transfer learning, one structure may have a feature
set composed of frequency response functions with 1024 spectral lines (i.e. 𝑑 = 1024), whereas another structure has a feature set
comprising transmissibilities with 16384 spectral lines (i.e. 𝑑 = 16384), and a third structure could even have a feature set formed
from three natural frequencies (i.e. 𝑑 = 3). Clearly in this scenario it is not trivial to map the feature sets from each structure
onto a shared latent space, but when possible, heterogeneous transfer learning methods make PBSHM applicable to a wider set
of population types — as long as each structure in the population shares some structural similarity with respect to a given SHM
problem  [9], as denoted by Rytters hierarchy [16]. In the case where no similarities exist between members of the population,

1 For clarity, heterogeneous transfer learning is not the only way to perform PBSHM for heterogeneous populations, and the two terms should not be confused.
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in relation to the SHM problem, negative transfer may occur, meaning the transfer learning algorithm will perform worse than a
conventional approach [9]. As established in [8], one method for assessing these structural similarities before attempting transfer is
to define a metric space over a space of structures, which can be used to objectively quantify whether transfer should be attempted.

Several transfer learning methods have been utilised within the health assessment literature [17–32]; these can be broadly divided
nto two main categories: those using fine-tuning approaches [17–24], and those performing some form of domain adaptation [25–
2]. Fine-tuning approaches seek to leverage pre-trained neural networks (often convolutional neural networks) for new tasks. The
pproach fixes a set of weights in the network, that are assumed to contain relevant information for the new task, for example
he feature extraction from some convolutional layer is expected to be the same on the new task. The remaining subset of weights
n the network are re-trained based on data for a new task. In the SHM literature, fine-tuning is typically used to perform image
lassification tasks [18–24], with Cao et al. applying the approach to vibration signals in a condition monitoring context [17].
ine-tuning as an approach does not aim to transfer label knowledge from dataset to dataset, but is focused on repurposing
xpensive-to-train deep neural networks.

The other category of methods in the SHM literature can be classed as using some form of domain adaptation, where the aim
s to move the feature spaces between datasets onto a shared latent space to aid the learning of a target task [25–32]. These
apers can again be subdivided into those that map each feature space onto a shared latent space and require some additional
lassifier [26,30,32], and those that seek to perform domain adaptation and classification in a single algorithm [25,27–29,31],
ypically using deep neural network architectures [27–29,31]. Several of these approaches use a maximum mean discrepancy
riterion as the mechanism with which the distance between each feature space (particularly between the joint distributions) is
inimised in the shared latent space [28–32]. However, all these existing approaches require the feature space from each structure to

e consistent, i.e. the dimension of the feature space for each structure is exactly the same, and are therefore all forms of homogeneous
transfer learning. This limits the application of these methods within an SHM context to scenarios where each structure has the same
feature space, e.g. transmissibilities with the same number of spectral lines. The method used in this paper relaxes this constraint,
allowing each structure to have a different dimension of feature space, therefore performing heterogeneous transfer learning.

Finally, it is noted that there are some similarities between KBTL and multi-task learning algorithms that exist within the SHM
literature [33,34], and again these require consistent feature spaces. Multi-task learning methods aim to infer a model that will
generalise to multiple tasks [35], such as predicting the health states of different structures. In particular, it is noted that sparse
Bayesian approaches to multi-task learning have been proposed in [34]; however, this method does not handle the inconsistent
feature space scenario, and is utilised in performing multi-output regression. To the authors’ best knowledge, this is the first
time heterogeneous transfer learning has been performed in an SHM context. A MATLAB implementation accompanies this paper:
https://github.com/pagard/EngineeringTransferLearning.

The outline of the paper is as follows. Section 2 states the multi-class formulation of KBTL, as proposed by Gönen and
Margolin [10]. Application areas are introduced in Section 3, discussing how the approach can be applied to multiple PBSHM
scenarios and populations. The following subsections present case studies demonstrating the effectiveness of KBTL in three
application areas, where the approach is benchmarked against a variety of conventional and heterogeneous transfer learning
approaches. Lastly, conclusions and further research are presented in Section 4.

2. Kernelised Bayesian transfer learning

Kernelised Bayesian Transfer Learning (KBTL) [10] is a supervised learning algorithm that aims to leverage information across
multiple datasets from different systems in generating one classification model in a generalised latent space. In order to understand
the algorithm it is helpful to define transfer learning, requiring two objects [11]:

A domain  = { , 𝑝(𝑋)} is an object that consists of a feature space  and a marginal probability distribution 𝑝(𝑋) over a finite
sample of feature data 𝑋 = {𝒙𝑖}𝑁𝑖=1 ∈  from  .

A task  = { , 𝑓 (⋅)} is the combination of a label space  and a predictive function 𝑓 ∶  →  .

Transfer learning is the process of improving a target predictive function, for a target task in the target domain, given
that knowledge is available for some source domains and tasks; assuming the source and target domains and/or tasks are
different [11–13].

KBTL aims to learn a set of tasks by leveraging the knowledge across all domains [10]. In a multi-class setting, the method also
allows information to be transferred between domains, meaning if a domain is missing a class label in training, but that label appears
in another domain, the algorithm will leverage this information in creating a classifier that generalises and accurately predicts that
label for all domains. More simply, the algorithm can be divided into two steps [10]: (1) a projection and dimensionality reduction
step, where a linear projection on a kernel embedding of each domain maps it to a shared latent space  and (2) a discriminative
classifier (for each class in a one-vs-all sense) is inferred in the shared latent space and used to predict each task. The first stage is
designed to handle inconsistent feature spaces — at least one feature space 𝑡 for a domain 𝑡 is not the same dimension 𝑑𝑡 as another
feature space 𝑘 in the domain set such that 𝑑𝑡 ≠ 𝑑𝑘 — by learning a mapping (through a kernel embedding) for each domain from
its 𝑑𝑡-dimensional space to one 𝑅-dimensional space for all domains; assuming each domain provides useful information in learning
he set of tasks, making the approach general to a wide range of problems. This ability to map from inconsistent feature spaces
o an 𝑅-dimensional space makes the approach a heterogeneous transfer learning method [13–15], which is useful for performing

inferences between populations of structures with inconsistent feature data.
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Formally, KBTL2 [10] assumes 𝑇 domains {𝑡}𝑇𝑡=1 with inconsistent feature spaces {𝑡}𝑇𝑡=1 indexed {1 ∶ 𝑇 } (where ∶ indicates the
set of integers from 1 to 𝑇 ). Each domain has an associated task {𝑡}𝑇𝑡=1 (i.e. 𝑡 relates to 𝑡 ∀ 𝑡 ∈ 1 ∶ 𝑇 ) with consistent label spaces
𝑡 = 𝑘 ∀ 𝑡, 𝑘 ∈ 1 ∶ 𝑇 (and hence can be seen as having one global label space ). It is assumed that each domain has 𝑁𝑡 finite
feature observations 𝑋𝑡 = {𝒙𝑡,𝑖 ∈ 𝑡}

𝑁𝑡
𝑖=1 ∈ R𝑁𝑡×𝑑𝑡 (where 𝑑𝑡 is the dimension of the feature set), that are independent and identically

distributed, and correspond to a finite set of label observations 𝑌𝑡 ∈  . In a multi-class setting, these label observations for each
domain are stacked into an 𝑁𝑡 ×𝐿 label matrix 𝑌𝑡 ∀ 𝑡 ∈ 1 ∶ 𝑇 , where for the 𝑖th row, only one element in 𝑌𝑡[𝑖, ∶] ∈ {−1 +1} is given
the label +1, located in the column that corresponds the class numeric (with all other elements being labelled −1), i.e. each column
corresponds to the one-vs-all label set for each class label. For each domain/task pair, there is a specific kernel function 𝑘𝑡(⋅, ⋅) that
defines the correlation between data points for a particular domain (aiding bespoke nonlinear mappings for each domain), moving
the data points into a Reproducing Kernel Hilbert Space (RKHS) in the form of a kernel matrix 𝐾𝑡 = 𝑘𝑡(𝑋𝑡, 𝑋′

𝑡 ) ∈ R𝑁𝑡×𝑁𝑡 ∀ 𝑡 ∈ 1 ∶ 𝑇 .
The first stage of the algorithm is to learn an optimal linear projection matrix 𝐴𝑡 ∈ R𝑁𝑡×𝑅 for each domain that maps the kernel

embedding onto a shared latent space  as 𝐻𝑡 = 𝐴𝖳
𝑡 𝐾𝑡 ∈ R𝑅×𝑁𝑡 , ∀ 𝑡 ∈ 1 ∶ 𝑇 . This step maps the domains on top of each other in the

shared latent space, but also performs dimensionality reduction, aiding classification of high-dimensional feature data.
The second stage of the approach seeks to jointly learn a discriminative classifier (for each class label in a one-vs-all sense) in

the shared latent space 𝒇 𝑡,𝑙 = 𝐻𝖳
𝑡 𝒘𝑙 + 𝟏𝑏𝑙 ∀ 𝑡 ∈ 1 ∶ 𝑇 (where 𝟏 is a vector of ones) and ∀ 𝑙 ∈ 1 ∶𝐿, where the parameters of the

classifier {𝑏𝑙 ∈ R1×1, 𝒘𝑙 ∈ R𝑅×1} are shared for all tasks. The probability of each class label is subsequently obtained, where the
MAP estimate can be used to determine the predicted label. It is noted that this part of the method has the same construction as
a Relevance Vector Machine (RVM) [36]; however, the relevance vectors now relate to the latent space  rather than individual
feature observations. A visual overview of the complete model for the binary classification setting is shown in Fig. 1, with a visual
example of the discriminative classifier in the shared latent space  when 𝑅 = 2.

Although Gönen and Margolin define KBTL as a transfer learning technology in [10], it is helpful to note that parallels can be
drawn with multi-task learning, where knowledge from multiple domains are used to improve the learning of a set of tasks (typically
in terms of a better predictive function), where each task is weighted evenly [11,35]. KBTL can be seen as weighting all tasks evenly,
even though it allows knowledge to be transferred across domains in the multi-class setting. In fact, some of the transfer learning
literature states that multi-task learning can be viewed as a subcategory of transfer learning [11,35], with multi-task learning being
the special case of transfer learning where all tasks are weighted evenly. However, other authors state that multi-task learning and
transfer learning are distinct and different technologies [37].

Finally, KBTL is formed as a hierarchical Bayesian model that differs slightly for the binary and multi-class (Fig. 2) classification
setting [10]. In the following section, the multi-class formulation from [10] is stated, showing the fully conjugate probabilistic model
and the variational inference scheme — the interested reader is referred to [10] for specific details on the binary formulation.

2.1. Multi-class classification

Typically, in discriminative classifiers such as a Support Vector Machine (SVM) or RVM, the multi-class problem (i.e. where
𝐿 > 2) involves training multiple classifiers in either a one-vs-all or one-vs-one manner. However, as the discriminative classifier is
jointly inferred in the shared latent space for KBTL (due to the desire to transfer information between domains), a multiple classifier
approach cannot be taken; this would lead to a separate latent space for each class. Instead a one-vs-all approach can be formed by
learning each classifier in the shared latent space; requiring a plate to be added to the binary graphical model for the class label
set, such that a one-vs-all classifier is inferred for each class, as depicted in Fig. 2. This formulation means that there are 𝐿 bias
parameters and weight vectors 𝑏𝑙 and 𝒘𝑙 ∀ 𝑙 ∈ 1 ∶𝐿, one associated with each class.

For the multi-class problem, the graphical model in Fig. 2 states the conditional relationships3 between the observed pa-
rameters {𝐾𝑡, 𝑌𝑡}𝑇𝑡=1 (where the observed training data 𝐷 = {𝑌𝑡}𝑇𝑡=1), priors 𝛯 = {{𝛬𝑡}𝑇𝑡=1, {𝜼𝑙 , 𝛾𝑙}

𝐿
𝑙=1}, hyperparameters4 𝜻 =

{𝜅𝜆, 𝜃𝜆, 𝜅𝜂 , 𝜃𝜂 , 𝜅𝛾 , 𝜃𝛾 , 𝜎2ℎ, 𝜈}, latent variables and model parameters 𝛩 = {{𝑏,𝒘}𝐿𝑙=1, {{𝒇 𝑡,𝑙}𝐿𝑙=1, 𝐴𝑡,𝐻𝑡}𝑇𝑡=1}. The variable that forms
the prior precision for the projection matrix 𝐴𝑡 is denoted 𝛬𝑡 ∈ R𝑁𝑡×𝑅, where each element in the prior is defined by the
hyperparameters {𝜅𝜆, 𝜃𝜆}. The 𝐿 weights and bias parameters are also specified by variables that form their prior precisions 𝜼𝑙 ∈ R𝑅×1

and 𝛾𝑙 ∈ R1×1 respectively, where each element is defined by their set of hyperparameters {𝜅𝜂 , 𝜃𝜂} and {𝜅𝛾 , 𝜃𝛾}. The latent space has
a hyperparameter that specifies the variance of the latent space data 𝜎2ℎ, and a non-negative margin hyperparameter 𝜈 is specified
for the likelihood function (which is discussed in the following section).

Following these definitions, the probabilistic modelling assumptions for the projection and dimensionality reduction part are:

𝛬𝑡[𝑖, 𝑠] ∼ (𝛬𝑡[𝑖, 𝑠] | 𝜅𝜆, 𝜃𝜆) (1a)

𝐴𝑡[𝑖, 𝑠] | 𝛬𝑡[𝑖, 𝑠] ∼  (𝐴𝑡[𝑖, 𝑠] | 0, (𝛬𝑡[𝑖, 𝑠])−1) (1b)

𝐻𝑡[𝑠, 𝑖] | 𝐴𝑡[∶, 𝑠], 𝐾𝑡[∶, 𝑖] ∼  (𝐻𝑡[𝑠, 𝑖] | 𝐴𝑡[∶, 𝑠]𝖳𝐾𝑡[∶, 𝑖], 𝜎2ℎ) (1c)

2 For an overview of the main nomenclature in KBTL the reader is referred to Appendix A.
3 Note that the model does not have specific distribution assumptions over each domains kernel embedding (and therefore the feature data for that domain),

aking the approach flexible for a wide range of SHM problems.
4 For the sake of clarity, dependencies on any of the hyperparameters 𝜻 are dropped from the notation in this paper. It is also noted that these are
4

hyperparameters of the hierarchical prior structures, and should be selected given prior beliefs of the problem.



Mechanical Systems and Signal Processing 167 (2022) 108519P. Gardner et al.
Fig. 1. A visual overview of binary KBTL applied to a population of structures 𝑡 ∀ 𝑡 ∈ 1 ∶ 𝑇 . Observed variables are in grey, model parameters are in red, and
latent variables are in blue.

∀ 𝑖 ∈ 1 ∶𝑁𝑡, ∀ 𝑠 ∈ 1 ∶𝑅, ∀ 𝑡 ∈ 1 ∶ 𝑇 , where square brackets denote indices — two elements denote rows and columns of a matrix

respectively, one element denotes a vector index, : denotes the set of index values. (⋅ | 𝜅, 𝜃) refers to a gamma distribution

parametrised by shape 𝜅 and scale 𝜃 parameters, and  (⋅ | 𝝁, 𝛴) refers to a Gaussian distribution parametrised by mean 𝝁 and

covariance 𝛴 parameters.
5
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Fig. 2. Multi-class classification: graphical model of KBTL (recreated from [10]). The graphical model shows the conditional relationships in the model, where
shaded and unshaded nodes represent observed and unobserved variables respectively. Dots represent constants (i.e. hyperparameters in the model), for example
{𝜅𝜆 , 𝜃𝜆} are hyperparameters that define the prior precision of the projection matrix for each domain 𝛬𝑡.

The modelling assumptions for the joint classification problem part are:

𝛾𝑙 ∼ (𝛾𝑙 | 𝜅𝛾 , 𝜃𝛾 ) (2a)

𝑏𝑙 | 𝛾𝑙 ∼  (𝑏 | 0, 𝛾−1𝑙 ) (2b)

𝜼𝑙[𝑠] ∼ (𝜼𝑙[𝑠] ; 𝜅𝜂 , 𝜃𝜂) (2c)

𝒘𝑙[𝑠] | 𝜼𝑙[𝑠] ∼  (𝒘𝑙[𝑠] | 0, (𝜼𝑙[𝑠])−1) (2d)

𝒇 𝑡,𝑙[𝑖] | 𝑏𝑙 ,𝒘𝑙 ,𝐻𝑡[∶, 𝑖] ∼  (𝒇 𝑡,𝑙[𝑖] | 𝒘𝖳
𝑙 𝐻𝑡[∶, 𝑖] + 𝑏𝑙 , 1) (2e)

𝒚𝑡,𝑙[𝑖] | 𝒇 𝑡,𝑙[𝑖] ∼ 𝛿(𝒇 𝑡,𝑙[𝑖]𝒚𝑡,𝑙[𝑖] > 𝜈) (2f)

∀ 𝑖 ∈ 1 ∶𝑁𝑡, ∀ 𝑠 ∈ 1 ∶𝑅, ∀ 𝑙 ∈ 1 ∶𝐿, ∀ 𝑡 ∈ 1 ∶ 𝑇 , where 𝛿(⋅) is a Dirac delta function. The non-negative margin parameter 𝜈
acts to create a low-density region between the 𝑙th class and the rest of the data (in a one-vs-all sense), which aids scaling issues,
similar to the concept of a margin in an SVM. In fact, the idea has also been used in semi-supervised learning with Gaussian process
models [38].

It is noted that the model setup for the classification part is similar to an RVM [36], where the gamma prior over the weight
precision acts to induce sparsity, forming an implicit Student’s T prior structure over each weight [39]; this choice of prior means
that weights are expected to be zero unless evidence from the likelihood suggests otherwise, leading to sparsity in the posterior
weight densities. However, in KBTL, the relevance vectors refer to the dimensions of the latent space, rather than a particular
feature observation; instead the gamma prior over the precision for the projection matrix acts to induce sparsity over each feature
observation from each domain. Incorporating sparsity assumptions into the model is useful. Here, sparsity is introduced into the
projection matrix (𝐴𝑡 ∀ 𝑡 ∈ 1 ∶ 𝑇 ) and the classifier weights and bias terms ({𝒘𝑙 , 𝑏𝑙} ∀ 𝑙 ∈ 1 ∶𝐿). The model must be flexible enough
to overcome the domain discrepancies and learn a separating hyperplane between classes; this can result in a large number of
parameters. Enforcing sparsity helps avoid overfitting by reducing effectively ‘irrelevant’ dimensions by forcing their probability
mass towards zero, and ‘integrating out’ these parameters.

2.1.1. Variational inference
The probabilistic model is intractable and cannot be solved in a Bayesian manner in closed form; however, a variational

approximation can be formed in order to perform efficient inference. A variational approach means that the log marginal likelihood
log 𝑝(𝐷) (log evidence5) can be decomposed, by introducing a candidate distribution 𝑞({𝛩,𝛯}) ∈ 𝑄,

log 𝑝(𝐷) = (𝑄) +(𝑄||𝑃 ) (3)

where,

(𝑄) = ∫ 𝑞({𝛩,𝛯}) log
𝑝(𝐷, {𝛩,𝛯})
𝑞({𝛩,𝛯})

d{𝛩,𝛯} (4)

and (𝑄||𝑃 ) is the Kullback–Leibler (KL) divergence between 𝑞({𝛩,𝛯}) and the posterior 𝑝({𝛩,𝛯} |𝐷),

(𝑄||𝑃 ) = −∫ 𝑞({𝛩,𝛯}) log
𝑝({𝛩,𝛯} | 𝐷)
𝑞({𝛩,𝛯})

d{𝛩,𝛯} (5)

5 Where the evidence 𝑝(𝐷) is calculated as 𝑝(𝐷) = ∫ 𝑝(𝐷 | {𝛩,𝛯})𝑝({𝛩,𝛯})𝑑{𝛩,𝛯} when inferring the true posterior, which in this case is intractable.
6
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where, as (𝑄||𝑃 ) ≥ 0, (𝑄) is a lower bound on log 𝑝(𝐷). The main concept in variational inference is that maximising the lower
bound (𝑄) is equivalent to minimising the KL-divergence, and as log 𝑝(𝐷) is independent of 𝑄, this will make 𝑞({𝛩,𝛯}) a rigorous
approximation of the posterior 𝑝({𝛩,𝛯} |𝐷). The aim is therefore to choose a suitable form for 𝑞({𝛩,𝛯}), such that the lower bound
(𝑄) is tractable (when the evidence 𝑝(𝐷) is not) and easily evaluated, whilst also being flexible, such that the bound is reasonably
tight. Typically, variational inference is performed by choosing a meaningful family of 𝑄 distributions and maximising the lower
bound with respect to 𝑄 to find the best approximation in 𝑄.

For the KBTL model, a mean-field approximation can be taken, meaning 𝑄 is factorised by partitioning the variables {𝛩,𝛯} into
independent parts, where each variable in {𝛩,𝛯} is governed by its own variational factor. By taking this approach the ensemble
approximation of the posterior is,

𝑝({𝛩,𝛯} | 𝐷) ≈ 𝑞({𝛩,𝛯}) =
𝑇
∏

𝑡=1
[𝑞(𝛬𝑡)𝑞(𝐴𝑡)𝑞(𝐻𝑡)]

𝐿
∏

𝑙=1
[𝑞(𝛾𝑙)𝑞(𝜼𝑙)𝑞(𝑏𝑙 ,𝒘𝑙)]

𝑇
∏

𝑡=1

𝐿
∏

𝑙=1
𝑞(𝒇 𝑡,𝑙) (6)

where,

𝑞(𝛬𝑡) =
𝑁𝑡
∏

𝑖=1

𝑅
∏

𝑠=1
(𝛬𝑡[𝑖, 𝑠] | 𝜅(𝛬𝑡[𝑖, 𝑠]), 𝜃(𝛬𝑡[𝑖, 𝑠])) (7a)

𝑞(𝐴𝑡) =
𝑅
∏

𝑠=1
 (𝐴𝑡[∶, 𝑠] |𝜇(𝐴𝑡[∶, 𝑠]), 𝛴(𝐴𝑡[∶, 𝑠])) (7b)

𝑞(𝐻𝑡) =
𝑁𝑡
∏

𝑖=1
 (𝐻𝑡[∶, 𝑖] |𝜇(𝐻𝑡[∶, 𝑖]), 𝛴(𝐻𝑡[∶, 𝑖])) (7c)

𝑞(𝛾𝑙) = (𝛾𝑙 | 𝜅(𝛾), 𝜃(𝛾)) (7d)

𝑞(𝜼𝑙) =
𝑅
∏

𝑠=1
(𝜼𝑙[𝑠] | 𝜅(𝜼𝑙[𝑠]), 𝜃(𝜼𝑙[𝑠])) (7e)

𝑞(𝑏𝑙 ,𝒘𝑙) = 
([

𝑏𝑙
𝒘𝑙

]

|𝜇(𝑏𝑙 ,𝒘𝑙), 𝛴(𝑏𝑙 ,𝒘𝑙)
)

(7f)

𝑞(𝒇 𝑡,𝑙) =
𝑁𝑡
∏

𝑖=1
  (𝒇 𝑡,𝑙[𝑖] |𝜇(𝒇 𝑡,𝑙[𝑖]), 𝛴(𝒇 𝑡,𝑙[𝑖]), a(𝒇 𝑡,𝑙[𝑖]), b(𝒇 𝑡,𝑙[𝑖])) (7g)

where 𝜅(⋅), 𝜃(⋅), 𝜇(⋅) and 𝛴(⋅) denote shape, scale, mean and covariance parameters for their arguments respectively. Due to the
non-negative margin parameter, the factorisation with respect to the discriminative function 𝒇 𝑡 becomes a truncated Gaussian
  (⋅ |𝝁, 𝛴, a, b), fully specified by a mean 𝝁, covariance 𝛴 and two truncation parameters a and b, which define the interval
a ≤ 𝑥 ≤ b, outside of which the probability density is zero.

By substituting the approximate posterior in Eq. (6) into Eq. (5), the bound on the marginal likelihood becomes (where the
dependence on the kernels is dropped for simplicity),

log 𝑝(𝐷) ≥ E𝑞(𝛩,𝛯)
[

log 𝑝(𝐷, {𝛩,𝛯})
]

− E𝑞(𝛩,𝛯)
[

log 𝑞(𝛩,𝛯)
]

(8)

which is optimised by iteratively maximising with respect to each factor in Eq. (6) separately until convergence. The approximate
posterior distribution for a particular factor 𝜏 is found as,

𝑞(𝜏) ∝ exp(E𝑞({𝛩,𝛯}∖𝜏)
[

log 𝑝(𝐷, {𝛩,𝛯})
]

). (9)

Given that the model is constructed from conjugate conditional distributions (gamma–Gaussian and Gaussian–Gaussian), the
approximate posterior distributions can be evaluated in closed-form (⟨𝑓 (⋅)⟩ denotes the posterior expectation E𝑞(⋅)[𝑓 (⋅)]), where the
dimensionality reduction part is updated as,

𝜅(𝛬𝑡[𝑖, 𝑠]) = 𝜅𝜆 + 1∕2 (10a)

𝜃(𝛬𝑡[𝑖, 𝑠]) = (1∕𝜃𝜆 + ⟨𝐴𝑡[𝑖, 𝑠]2⟩∕2)−1 (10b)

𝛴(𝐴𝑡[∶, 𝑠]) = (diag
(

⟨𝛬𝑡[∶, 𝑠]⟩
)

+𝐾𝑡𝐾
𝖳
𝑡 ∕𝜎

2
ℎ)

−1 (11a)

𝜇(𝐴𝑡[∶, 𝑠]) = 𝛴(𝐴𝑡[∶, 𝑠])(𝐾𝑡⟨𝐻𝑡[𝑠, ∶]𝖳⟩∕𝜎2ℎ) (11b)

𝛴(𝐻𝑡[∶, 𝑖]) =

(

I∕𝜎2ℎ +
𝐿
∑

𝑙=1
⟨𝒘𝑙𝒘𝖳

𝑙 ⟩

)−1

(12a)

𝜇(𝐻𝑡[∶, 𝑖]) = 𝛴(𝐻𝑡[∶, 𝑖])(⟨𝐴𝖳
𝑡 ⟩𝐾𝑡[∶, 𝑖]∕𝜎2ℎ +

𝐿
∑

𝑙=1
⟨𝒇 𝑡,𝑙[𝑖]⟩⟨𝒘𝑙⟩ − ⟨𝑏𝑙𝒘𝑙⟩) (12b)
7
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3

a
s

meaning that the shared latent space is updated to reflect the performance of all 𝐿 discriminative classifiers. The approximate
posterior distributions for the classification part are,

𝜅(𝛾𝑙) = 𝜅𝛾 + 1∕2 (13a)

𝜃(𝛾𝑙) = (1∕𝜃𝛾 + ⟨𝑏2𝑙 ⟩∕2)
−1 (13b)

𝜅(𝜼𝑙[𝑠]) = 𝜅𝜂 + 1∕2 (13c)

𝜃(𝜼𝑙[𝑠]) = (1∕𝜃𝜂 + ⟨𝒘𝑙[𝑠]2⟩∕2)−1 (13d)

𝛴(𝑏𝑙 ,𝒘𝑙) =

[

⟨𝛾𝑙⟩ +
∑𝑇

𝑡=1 𝑁𝑡
∑𝑇

𝑡=1 𝟏
𝖳
⟨𝐻𝖳

𝑡 ⟩
∑𝑇

𝑡=1⟨𝐻𝑡⟩𝟏 diag
(

⟨𝜼𝑙⟩
)

+
∑𝑇

𝑡=1⟨𝐻𝑡𝐻𝖳
𝑡 ⟩

]−1

(14a)

𝜇(𝑏𝑙 ,𝒘𝑙) = 𝛴(𝑏𝑙 ,𝒘𝑙)

[

∑𝑇
𝑡=1 𝟏

𝖳
⟨𝒇 𝑡,𝑙⟩

∑𝑇
𝑡=1⟨𝐻𝑡⟩⟨𝒇 𝑡,𝑙⟩

]

(14b)

𝛴(𝒇 𝑡,𝑙[𝑖]) = 1 (15a)

𝜇(𝒇 𝑡,𝑙[𝑖]) = ⟨𝒘𝖳
𝑙 ⟩⟨𝐻𝑡[∶, 𝑖]⟩ + ⟨𝑏𝑙⟩ (15b)

a(𝒇 𝑡,𝑙[𝑖]) =

{

−∞, if 𝒚𝑡,𝑙[𝑖] = −1
𝜈, if 𝒚𝑡,𝑙[𝑖] = +1

(15c)

b(𝒇 𝑡,𝑙[𝑖]) =

{

−𝜈, if 𝒚𝑡,𝑙[𝑖] = −1
∞, if 𝒚𝑡,𝑙[𝑖] = +1

(15d)

where the posterior expectations are defined in Appendix B.
It is noted that KBTL requires the specification of several hyperparameters that are not inferred via these updates. Firstly,

{𝜅𝜆, 𝜃𝜆, 𝜅𝜂 , 𝜃𝜂 , 𝜅𝛾 , 𝜃𝛾} are all hyperprior hyperparameters and must be defined given prior belief about sparsity in the projection
matrix, weights and bias respectively. Given the hierarchical model, the posterior will be relatively insensitive to the choice of
values for these hyperparameters. A guide for selecting these hyperparameters is as follows: if prior belief suggests the solution
should be sparse then 𝜅 is small and 𝜃 is large, whereas if the problem has a small number of samples then 𝜅 and 𝜃 should both
be small (where both parameters must be non-negative). The remaining hyperparameters are the variance of the latent space 𝜎2ℎ,
and the margin 𝜈, which can be chosen given prior belief (as used in this paper) or could be updated by numerically optimising the
lower bound. Finally, for the model to be fully specified, the dimension of the latent space 𝑅 must be chosen. As 𝑅 ∈ Z+ ≠ 0, this
parameter can be seen more as a model choice, and therefore a model selection technique, or cross-validation, should be used to
determine 𝑅.

2.1.2. Prediction
The predictive equations are formed by substituting the true posteriors by the approximate posterior distributions. For the

projection and dimensionality reduction part, this action leads to substituting 𝑝(𝐴𝑡 |𝐷) by 𝑞(𝐴𝑡). The predictive distribution of the
latent space for each domain 𝒉𝑡,∗ for a new data point 𝒙𝑡,∗ (through its corresponding kernel 𝑘(𝑋𝑡,𝒙𝑡,∗) = 𝒌𝑡,∗) is,

𝑝(𝒉𝑡,∗ | 𝒌𝑡,∗, 𝐷) =
𝑅
∏

𝑠=1
 (𝒉𝑡,∗[𝑠] | 𝜇(𝐴𝑡[∶, 𝑠])𝖳𝒌𝑡,∗, 𝜎2ℎ + 𝒌𝖳𝑡,∗𝛴(𝐴𝑡[∶, 𝑠])𝒌𝑡,∗) (16)

formed from standard Gaussian conditionals. In a similar manner, the predictive distribution for the discriminative classifier can
also be solved by approximating 𝑝(𝑏𝑙 ,𝒘𝑙 | 𝐷) by 𝑞(𝑏𝑙 ,𝒘𝑙),

𝑝(𝑓𝑡,𝑙,∗ | 𝒉𝑡,∗, 𝐷) =  (𝒇 𝑡,𝑙,∗ | 𝜇(𝑏𝑙 ,𝒘𝑙)𝖳[1 𝒉𝑡,∗]𝖳, 1 + [1 𝒉𝑡,∗]𝛴(𝑏𝑙 ,𝒘𝑙)[1 𝒉𝑡,∗]𝖳) (17)

where the probability of an observation belonging to class 𝑙 is predicted via a truncated Gaussian cumulative density function,

𝑝(𝑦𝑡,𝑙,∗ = +1 | 𝑓𝑡,𝑙,∗, 𝐷) = 𝑧−1𝑡,𝑙,∗𝛷
(𝜇(𝑓𝑡,𝑙,∗) − 𝜈

𝛴(𝑓𝑡,𝑙,∗)

)

(18)

where 𝑧𝑡,𝑙,∗ is the normalisation coefficient for a truncated Gaussian distribution, where [a b] (the truncation interval) are for the
𝑦 = +1 case (see B). This predictive equation for the class label means that 𝒚𝑡,∗ is a 1×𝐿 vector, where each element is the probability
of the observation belonging to each class. Finally, a MAP estimate of the class label is formed by finding the element 𝑙 corresponding
to max (𝑝(𝒚𝑡,∗ = +1 | 𝒇 𝑡,∗, 𝐷)).

. Case studies

In order to demonstrate the applicability of kernelised Bayesian transfer learning [10] for population-based SHM three
pplications are considered. The first application considers a population of shear-structures formed from numerical and experimental
tructures, with each member of the population having a different number of storeys [32], resulting in a heterogeneous population.
8
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w

The feature set for each member of the population is formed from the set of 𝑛 bending natural frequencies corresponding to the
structure’s number of storeys, meaning the feature spaces across the population are inconsistent. Binary and multi-class localisation
problems are considered for this population, demonstrating the effectiveness of KBTL.

The second application considers an experimental population with one member, namely an aircraft wing from a Gnat trainer
aircraft [40,41]. The aircraft dataset forms two distinct domains, where class distribution shifts have occurred due to changes caused
by reattaching inspection panels. In addition, the sensor configuration has changed between the two domains, where a different
number of sensors were available in each domain, meaning the feature spaces, formed from transmissibilities of transducer pairs,
are inconsistent. In this application KBTL solves a multi-class localisation problem.

The final application considers a population of five, eight degree-of-freedom systems, formed from numerical and experiential
structures, with similar dynamic properties. The feature space for each structure is formed from a frequency response function;
however, the measurement properties (i.e. the sample frequency and sample time) are different for each member, leading to
inconsistent feature spaces. The SHM problem is classifying the extent of damage located in one of the springs.

For each of the following case studies, KBTL is benchmarked against Heterogeneous Feature Augmentation (HFA) [14] — a
supervised heterogeneous transfer learning method that learns a mapping to an augmented (and shared) latent space where a
discriminative support vector machine-based classifier is inferred [14] (as with KBTL, and to the authors’ best knowledge, HFA
also has not been applied in an SHM context before). One main difference between HFA and KBTL is that HFA is constructed for a
single source and single target domain. For this reason, all domain combinations are considered in the comparisons. Finally, KBTL
is also compared to two single-domain methods (i.e. conventional machine learning with no knowledge transfer): Single-Domain
KBTL (SD-KBTL),6 and an RVM, trained using the algorithm in [36] with a Bernoulli likelihood (in the multi-class setting a one-
vs-all approach is used). It is noted that SD-KBTL refers to KBTL trained and tested on a single domain. SD-KBTL may improve
performance over an RVM, as the projection inferred by SD-KBTL may lead to a more separable feature space (for the given domain
used in training). For each algorithm, a radial-basis kernel is used; the scale hyperparameters for each domain are determined using
the median heuristics approach [42] (on the training dataset).

In addition, the total entropy 𝐻(𝐴𝑡) of the projection matrices 𝐴𝑡 is calculated for each domain, given their approximate Gaussian
posterior distribution.

𝐻(𝐴𝑡) =
𝑅
∑

𝑠=1
−∫ 𝑝(𝐴𝑡[∶, 𝑠]) log 𝑝(𝐴𝑡[∶, 𝑠]) 𝑑𝐴𝑡[∶, 𝑠] =

𝑅
∑

𝑠=1

𝑁𝑡
2
(1 + ln(2𝜋)) + 1

2
ln (|𝛴(𝐴𝑡[∶, 𝑠])|) (19)

The entropy provides a measure of how informative each domain was in learning the latent space  (given 𝐻𝑡 = 𝐴𝖳
𝑡 𝐾𝑡 ∀𝑡 ∈ 1 ∶ 𝑇 )

for the complete model. Furthermore, the entropy of each projection matrix gives an indication of whether elements in the matrix
have been termed ‘irrelevant’ from the sparsity assumption on 𝐴𝑡 (Eqs. (1a) and (1b)). This measure is particularly useful for PBSHM,
as it allows the modellers to assess which structures (and their training datasets) were informative to the overall SHM problem. For
example, once a KBTL model has been inferred, domains with low entropy for the projection matrix could be ‘pruned’, if these
structures are only being used to support an SHM task in other particular structures.

3.1. Shear-structures: feature space heterogeneity arising from structural heterogeneity

Two SHM problems are considered for a population of shear-structures, demonstrating the effectiveness of the binary and
multi-class forms of KBTL. These two scenarios represent a significant set of PBSHM problems; namely, developing a machine
learning model that applies across a set of different structures. Both scenarios consider the same population of seven structures;
six are simulated (as lumped-mass models in bending) and one is experimental, as depicted in Figs. 3 and 4. Consequently, this
particular population highlights the ability of KBTL in leveraging and transferring information from physics-based models to real
world structures, even when the simulated structures are different to the structure in practice. Each simulated shear structure is
represented by 𝑛 mass {𝑚𝑖}𝑛𝑖=1, stiffness {𝑘𝑖}𝑛𝑖=1 and damping {𝑐𝑖}𝑛𝑖=1 coefficients, assembled via the lumped-mass model in Fig. 4.
The masses are specified by length 𝑙𝑚, width 𝑤𝑚, thickness 𝑡𝑚 and density 𝜌. The stiffness elements are calculated from four cantilever
beams in bending 4𝑘𝑏 = 4(3𝐸𝐼∕𝑙3𝑏 ), where 𝐸 is the elastic modulus, 𝐼 the second moment of area and 𝑙𝑏 the length of the beam. The
damping coefficients are directly specified and are not derived from a physical model. Each observation, for a particular structure, is
composed from random draws from base distributions for 𝐸, 𝜌 and 𝑐. The properties of the six simulated structures in the population
are shown in Table 17. The experimental structure is constructed from aluminium 6082 with dimensions similar to those in Table 1.
Observational data, in the form of three natural frequencies, were collected via modal testing, where an electrodynamic shaker
applied a 0 to 6553.6 Hz broadband white-noise excitation containing 16384 spectral lines (0.2 Hz resolution) to the first storey
and three uni-axial accelerometers measured the response at each of the three storeys.

In both the binary and multi-class scenarios, damage is introduced to the structure via an open crack (50% of the beam width)
at the midpoint of a beam at a particular storey. In the simulated structures, this damage is applied using a reduction in 𝐸𝐼 (using
the model in [43]) across one of the beams i.e. 𝑘𝑟 = 3(3𝐸𝐼∕𝑙3𝑏 ) + 𝑘𝑑 , where 𝑘𝑑 is the tip stiffness of a cantilever beam subject to
an open crack of length 𝑙𝑐𝑟 at location 𝑙𝑙𝑜𝑐 along the length of the beam. Similarly, a saw cut was applied to one of the beams

6 SD-KBTL may offer improved performance over an RVM as it combines the inference of a separating hyperplane in the kernel space with a linear projection,
hich may aid separability, even when considering a single domain.
7 The approximate range of mean properties for the undamaged set of structures are 5 ≤ 𝑚 ≤ 17 kg, 4.0 ≤ 𝑐 ≤ 6.4 N s/m and 0.5 × 105 ≤ 𝑘 ≤ 3 × 105 N∕m.
9
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Fig. 3. Experimental three-storey shear structure [32].

Fig. 4. Schematic of the shear structures: panel (a) is a nominal representation of the systems, and panel (b) depicts the cantilever beam component where
{𝑘𝑖}𝑛𝑖=1 = 4𝑘𝑏 i.e. the stiffness coefficients in (a) are generated from four times the tip bending stiffness in (b).

Table 1
Properties of the six simulated structures in the heterogeneous population case study. Degrees-of-freedom (DOF) are denoted by
𝑑𝑡.
 DOF Beam geometry Mass geometry Elastic modulus Density Damping

𝑑𝑡 {𝑙𝑏 , 𝑤𝑏 , 𝑡𝑏} {𝑙𝑚 , 𝑤𝑚 , 𝑡𝑚} 𝐸 𝜌 𝑐
mm mm GPa kg∕m3 N s∕m

1 4 {185, 25, 6.35} {350, 254, 25} 
(

71, 1.0 × 10−9
)

 (2700, 10)  (50, 0.1)
2 8 {200, 35, 6.25} {450, 322, 35} 

(

70, 1.2 × 10−9
)

 (2800, 22)  (8, 0.8)
3 10 {177, 45, 6.15} {340, 274, 45} 

(

72, 1.3 × 10−9
)

 (2550, 25)  (25, 0.2)
4 3 {193, 32, 5.55} {260, 265, 32} 

(

75, 1.5 × 10−9
)

 (2600, 15)  (20, 0.3)
5 5 {165, 46, 7.45} {420, 333, 46} 

(

73, 1.4 × 10−9
)

 (2650, 20)  (45, 0.1)
6 3 {175, 40, 6.05} {400, 310, 41} 

(

69, 1.1 × 10−9
)

 (2750, 18)  (20, 0.2)

for the experimental structure (50% of the beam width at the midpoint of the front-right beam at a particular storey). It is noted
that all damage scenarios were for single-site damage cases. Lastly, the features in this case study are damped natural frequencies
i.e. 𝑋𝑡 = {𝝎𝑡,𝑖}

𝑁𝑡
𝑖=1 ∈ R𝑁𝑡×𝑑𝑡 ∀𝑡 ∈ 1 ∶ 𝑇 (where 𝑑𝑡 is the number of degrees-of-freedom 𝑛 for each domain) — leading to a clear need

for heterogeneous transfer learning.

3.1.1. Binary case study
The binary case study considers a scenario where the SHM problem  is a damage-detection problem (which can also be seen

as a two-class damage localisation problem). For a binary classification problem KBTL can only be used as a multi-task learner, as
10
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Table 2
Shear-structure population, binary case study: Number of data points in each class for each
domain.

Domain Training Testing

 𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

1 110 25 1000 1000
2 60 20 1000 1000
3 70 50 1000 1000
4 120 10 1000 1000
5 200 25 1000 1000
6 100 10 1000 1000
7a 3 3 2 2

aDenotes the domain for the experimental structure.

each domain requires some examples of each class in order to infer the dimensionality reduction matrix 𝐴𝑡 ∀ 𝑡 ∈ 1 ∶ 𝑇 . As such, the
aim of the algorithm is to infer a joint latent space that aids classification for all domains equally. In this scenario the two classes8,
are an undamaged state, denoted by ‘0’ and an open crack applied to the first storey9 denoted by ‘1’.

Class imbalance is common in SHM training datasets, as often more undamaged-state observations can be collected than damaged.
In order to reflect this general scenario, here each domain has a different degree of class imbalance, presented in Table 2, highlighting
that for some domains, such as Domain Four, it would be difficult to create a machine learner that would generalise well, based on
such sparse damage observations.

Given the small sample sizes in each domain, the hyperparameters of the projection matrix were (𝜅𝜆, 𝜃𝜆) = (1×10−3, 1×10−3), and
the hyperparameters of the bias and weights were (𝜅𝛾 , 𝜃𝛾 ) = (𝜅𝜂 , 𝜃𝜂) = (1 × 10−3, 1 × 10−3) for both KBTL and SD-KBTL. In addition,
the standard deviation of the latent space was set to 𝜎ℎ = 0.25, reflecting an expectation that the mapping will be relatively certain,
given that it is a two-class problem from domains of relatively low dimensions. Furthermore, a margin 𝜈 = 0 was chosen, with the
latent space dimension 𝑅 = 2 selected to aid visualisation of the algorithm.

The expectation of the posterior latent space, for all domains, is depicted in Fig. 5 for both the training E
[

𝑝(𝐻𝑡 |𝐷,𝐾𝑡)
]

(top
panels) and testing E

[

𝑝(𝐻𝑡,∗ |𝐷,𝐾𝑡,∗)
]

data (bottom panels). In addition, the discriminative classifier (mean and three standard
deviations) in the expected latent space is illustrated in Fig. 5 (left panels) along with the MAP estimate of the predicted class labels
(where a point belongs to ‘+1’ if 𝑝(𝑦𝑡,∗ = +1 | 𝑓𝑡,∗, 𝐷) ≥ 0.5 and ‘−1’ if < 0.5). The true labels are also shown in Fig. 5 (right panels)
as a comparison. Furthermore, the testing classification accuracies are presented in Fig. 6 as a measure of performance. It is noted
that HFA is not applied on the same domain that has been used as the source domain, as the aim of the algorithm is to transfer
knowledge to a different target domain. The sensitivity and specificity are stated for KBTL in Fig. 7, indicating the models true
positive and true negative rates. Finally, Fig. 8 presents the entropy of the projection matrices for each domain.

In this example, KBTL outperforms both SD-KBTL and RVM classifiers when considering the average performance across all
domains, with an average classification accuracy of 97.4% compared to 96.4% and 95.6% for SD-KBTL and RVM. It also has a high
sensitivity and specificity for each class (>0.8) with a particular high true positive rate for ‘𝑦 = 1’ across all domains. However, in
terms of average accuracy, KBTL is either matched or outperformed by HFA (when trained using any domain as the source domain,
with accuracies between 97.4%–98.4%). Considering each domain individually, it can be seen that KBTL does not outperform the
other classifiers on a domain-by-domain basis. KBTL is outperformed by HFA in all but two domains, Domain Two and Domain
Three, which are the domains with the least number of observations in training. This shows that KBTL may improve performance
of domains with a small number of observations, transferring some knowledge, but may reduce performance in other domains to
achieve this. An interesting observation is that the entropy of the projection matrices is lowest where classification performance
gains are highest (i.e. Domains Two, Three, and Seven), which may evidence that the algorithm is trying to overcome this lack
of information in training by slightly reducing performance in more informative domains. Compared to an RVM classifier trained
on each domain individually, KBTL has a higher accuracy in all domains but Domain Six, where an RVM classifier outperforms
all the other approaches. The reason for this difference in performance is likely a result of clear class separability in Domain Six
(given that the structure has the joint lowest number of storeys at three), meaning a classifier trained on Domain Six generalises
well. In the comparison with SD-KBTL, KBTL is only outperformed in Domains Two and Three. This outcome is likely a result of
the fact that these domains have relatively small amounts of observations for both classes (compared with the other domains), and
that they have the largest number of degrees-of-freedom (eight and ten respectively). These two factors will contribute to classes
that have a large degree of overlap in their original domain, as changes in natural frequency will be less sensitive to damage at
the first storey compared to the other domains (due to a lower amount of strain energy); additionally there is a lower amount of
information to explain the class boundary. SD-KBTL can learn a nearer-optimal dimensionality reduction and classifier for these
domains individually than KBTL can when considering the joint problem across domains.

8 These labels are converted into the [−1 +1] space for each class before applying the algorithm.
9 The ‘damaged’ class for all domains has been kept the same, so that it is clear what information is being transferred across the domains.
11
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Fig. 5. Shear-structure population, binary case study. A visualisation of the expectation of the posterior latent space for the training (top) and testing (bottom)
data, where 𝐻[∶, 1] and 𝐻[∶, 2] are the first and second dimensions of the 𝑅 = 2-dimensional shared latent space . The left panels depict the discriminative
classifier (mean (-) and three standard deviations (- -)) as well as the predicted label MAP estimates. The right panels present the true labels. Each domain is
denoted by a different symbol, {×, □, ⋆, ∗, ⋄, ▵, ∙}, for domains 1 ∶ 7 respectively.

Fig. 6. Shear-structure population, binary case study: testing accuracies. HFA(𝐷𝑖) refers to the results where the 𝑖th domain is considered the source domain.

3.1.2. Multi-class case study

One of the main aims in PBSHM is the ability to transfer knowledge and create machine learning-based models that generalise
well across different structures. In the light of this goal, the multi-class shear-structure case study has been designed to demonstrate
these aims. The SHM problem  considered in this case study is one of damage localisation, where the label space  =
{‘0’, ‘1’ ‘2’ ‘3’} is consistent across all domains; class ‘0’ is undamaged and classes ‘1’ to ‘3’ relate to damage at floors one to
12
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Fig. 7. Shear-structure population, binary case study: testing sensitivity and specificity.

Fig. 8. Shear-structure population, binary case study: total entropy of the projection matrix 𝐴𝑡 per domain.

Table 3
Shear-structure population, multi-class case study: Number of data points in each class for each
domain.

Domain Training Testing

 𝑦 = 0 𝑦 = 1 𝑦 = 2 𝑦 = 3 𝑦 = 0 𝑦 = 1 𝑦 = 2 𝑦 = 3

1 120 60 60 0 1000 1000 1000 1000
2 50 20 25 20 1000 1000 1000 1000
3 55 30 30 25 1000 1000 1000 1000
4 70 45 1 45 1000 1000 1000 1000
5 140 1 70 70 1000 1000 1000 1000
6 200 50 50 1 1000 1000 1000 1000
7a 3 3 3 0 2 2 2 0

aDenotes the domain for the experimental structure.

three respectively. The label space is consistent, as the smallest structure is a three-storey building structure, and therefore, all the
class labels can exist in all domains, aiding the potential for positive transfer.

As with the binary case study, the training dataset has been designed to demonstrate several aims of population-based SHM.
Namely, knowledge transfer and creating a machine learner that generalises well across all domains, where some may have sparse
damage observations. Table 3 displays the number of data points used in the training and testing. It can be seen that Domain One
requires knowledge transfer, as no observations of class ‘3’ are present in training. In addition, Domains Four, Five and Six also
require a degree of knowledge transfer, as each domain has a class with only one data point. Furthermore, Domains Two and Three,
with eight and ten storeys, have a larger degree of overlap between the classes in their original feature space, where there is potential
for aiding classification by leveraging knowledge in other domains.

Given the small sample sizes in each domain, the hyperparameters for KBTL and SD-KBTL were (𝜅𝜆, 𝜃𝜆) = (𝜅𝛾 , 𝜃𝛾 ) = (𝜅𝜂 , 𝜃𝜂) =
(1×10−3, 1×10−3) for the projection matrix, bias and weight variances respectively. The latent space standard deviation was 𝜎ℎ = 6
reflecting the uncertainty in mapping the four classes in the latent space, which in turn aids the spreading of the classes into the
latent space. Finally, the margin 𝜈 = 1 was chosen to aid separability between the classes, and the latent space dimensionality was
𝑅 = 2 to aid visualisation. All the discriminative approaches in this case study are trained in a one-vs-all manner.

Fig. 9 illustrates the expected posterior latent space for both the training E
[

𝑝(𝐻𝑡 |𝐷,𝐾𝑡)
]

(top panels) and
testing E

[

𝑝(𝐻𝑡,∗ |𝐷,𝐾𝑡,∗)
]

data (bottom panels). As in the binary case study, the discriminative classifiers are depicted in this latent
space (left panels), where the MAP estimate of the labels are shown (i.e. the label is assigned to the class with the largest probability
compared to the other classes). The true labels are also displayed (right panels) as a visual comparison. The testing accuracies and
macro F1-scores are presented in Fig. 10, along with the average test accuracy across all domains and Fig. 11 states the entropy of
the projection matrices.

In this case study KBTL performs best when considering the average performance across all domains, with an average
classification accuracy of 92.9% compared to the highest HFA accuracy (where Domain One was the source domain) of 91.3%,
13
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Fig. 9. Shear-structure population, multi-class case study. A visualisation of the expectation of the posterior latent space for the training (top) and testing
(bottom) data, where 𝐻[∶, 1] and 𝐻[∶, 2] are the first and second dimensions of the 𝑅 = 2-dimensional shared latent space . The left panels depict the
one-vs-all discriminative classifiers (mean (-) and three standard deviations (- -)) for each class (indicated by the colour) as well as the predicted label MAP
estimates. The right panels present the true labels. Each domain is denoted by a different symbol, {×, □, ⋆, ∗, ⋄, ▵, ∙}, for domains 1 ∶ 7 respectively.

and the SD-KBTL and RVM classifiers, 82.6% and 82.8%, respectively. Comparing KBTL and HFA a pattern emerges. In domains
where a class label is missing (Domains One and Seven), KBTL significantly outperforms HFA, with 100% classification accuracies
compared to all HFA accuracies, that are below 84%, demonstrating that KBTL has successfully transferred label knowledge to that
particular domain. For example, in Domain One, knowledge about three of the known classes helps to anchor the inferred projection
matrix in training, meaning KBTL is able to place class ‘3’ in the correct part of the latent space for Domain One. However, in domains
where some knowledge about all the class labels exists, HFA consistently outperforms KBTL, although very slightly. This effect is
similar to that shown in the binary case study, where KBTL may reduce performance slightly in domains where knowledge is most
complete in order to improve performance in domains with sparse data. This observation, to a degree, is supported by the entropy
of the projection matrices, where Domains Five and Six in particular are being leveraged (i.e. they have high entropy) to infer
the shared latent space; however it is noted that the projection matrix for Domain One also has high entropy. Furthermore, KBTL
outperforms the other two approaches in all domains apart from Two and Three, where the RVM classifier is best; in fact in Domain
Three the RVM classifier outperforms all other methods. This outcome is likely a result of Domains Two and Three having the most
even balance of data points for each class. It is interesting to note that the macro F1-score demonstrates that SD-KBTL has failed to
capture the behaviour of Domains Four, Five and Six. In training, the SD-KBTL projection for these domains has little information
14
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Fig. 10. Shear-structure population, multi-class case study: top and middle panels display the testing accuracies and macro F1-scores and the bottom panel
shows the average accuracy across all domains. HFA(𝐷𝑖) refers to the results where the 𝑖th domain is considered the source domain.

Fig. 11. Shear-structure population, multi-class case study: total entropy of the projection matrix 𝐴𝑡 per domain.

about the classes with one data point, this affects the inferred mapping to the latent space. As a consequence, the inferred mapping
is unlikely to be optimal for that class, and therefore does not generalise well for the class with one data point, reflected in testing,
leading to accuracies all below 75%. Similarly, the RVM also performs worse than KBTL in these domains, but unlike SD-KBTL, it
is able to capture partial information about the class with one data point in training. Finally, it is noted that KBTL achieves 100%
classification accuracy on the experimental data — something that is not achieved by HFA or the RVM classifier.

3.2. Gnat aircraft wing: feature space heterogeneity arising from sensor configurations

One reason that feature spaces may be heterogeneous and inconsistent is due to different sensor configurations. The case study
in this application considers a scenario where two different sensor configurations, shown in Fig. 12, were attached to the same
aircraft wing (part of Gnat trainer aircraft), which form two domains. In addition, domain shift occurs between the two domains,
with the data distributions changing due to slight difference in the boundary conditions of inspection panels following replacement,
meaning some form of transfer learning is required.

The Gnat dataset has been well-studied [40,41,44–47], and is an experimental dataset in which an aircraft wing was excited
with a band-limited Gaussian noise and the response measured at several locations via uni-axial accelerometers. Inspection panels
15
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Fig. 12. Schematics of the Gnat aircraft wing with two sensor configurations (not to scale).

ere subsequently removed, giving pseudo-damage scenarios. The feature set was formed from transmissibilities, calculated from
ccelerometer pairs, with 1024 spectral lines between 1024–2048 Hz; for more information about the dataset, the interested reader
s referred to [41].

This case study considers part of the dataset, where a local group of three inspection panels (P1, P2 and P3) are removed
equentially (as seen in Fig. 12), i.e. 𝑌 = 0 when no panels are removed, 𝑌 = 1 when P1 is removed, 𝑌 = 2 when P2 is

removed and 𝑌 = 3 when P3 is removed. 100 measurements were collected for each class, and the measurement sequence repeated
with the inspection panels being reattached, i.e. data were collected for classes ‘0’ to ‘3’ before the panels were reattached and a
second sequence of data collected for classes ‘0’ to ‘3’, with fastener torque being controlled [41]. In this case study, the two data
sequences are categorised as two different domains, each with 400 observations. Furthermore, in Domain One two transmissibilities
are available, 𝑇 1 = 𝐴1∕𝐴𝑅 and 𝑇 2 = 𝐴2∕𝐴𝑅, whereas in Domain Two an additional sensor is added, meaning that an extra
transmissibility path 𝑇 3 = 𝐴3∕𝐴𝑅 is included in the set {𝑇 1, 𝑇 2, 𝑇 3}. The two features spaces for each domain are therefore
nconsistent and heterogeneous, with 1 = {𝑇 1, 𝑇 2} ∈ R𝑁1×2048 and 2 = {𝑇 1, 𝑇 2, 𝑇 3} ∈ R𝑁2×3072. The training datasets are:

• Domain One consists of 50 observations of each class, apart from 𝑌 = 3 where no observations are available, i.e. 𝑁 𝑡𝑟𝑎𝑖𝑛
1 = 150.

• Domain Two has 10 observations of each class, i.e. 𝑁 𝑡𝑟𝑎𝑖𝑛
2 = 40.

The remaining data points are used as independent test sets for the two domains. Fig. 13 presents a visualisation of the training
ata feature spaces for Domains One and Two, stating their stacked transmissibilities for each observation, along with a comparison
f each domain’s first two principal components. If no domain shift had occurred, then one might expect that (up to a certain
imension), the PCA components would be well aligned (i.e. close in Euclidean space); this would then allow a conventional
lassification approach, where a classifier is inferred in a PCA subspace for Domain One and applied to Domain Two. As seen
n Fig. 13 the PCA subspaces change significantly between the two domains, even for the first two principal components, meaning
hat domain shift has occurred, i.e. the underlying data distributions have changed between Domains One and Two.

KBTL was used to infer a joint classification model for the two domains with the aim of aiding classification of 𝑌 = 3 on Domain
ne (where no observations of 𝑌 = 3 were available in training). Once more, there were a small number of observations in each
omain, meaning that the hyperparameters were set to (𝜅𝜆, 𝜃𝜆) = (𝜅𝛾 , 𝜃𝛾 ) = (𝜅𝜂 , 𝜃𝜂) = (1×10−3, 1×10−3). The latent space standard
eviation was 𝜎ℎ = 1 reflecting a degree of uncertainty in mapping, with a small margin of 𝜈 = 0.1 used to try and aid separability.
or visualisation purposes 𝑅 = 2 was used.

The inferred expected posterior latent space, classifier functions and label MAP estimates (left panels) are shown in Fig. 14,
here the top panels show the training data and the bottom panels the testing data. The right panels show the expected posterior

atent space where the data points are coloured according to their true labels. It can be seen that class 𝑌 = 3 is placed at the centre of
he latent space around the origin, reflecting that little information is known about the class, with only ten observations in Domain
wo. The testing accuracies are presented in Fig. 15.

The testing accuracies demonstrate that KBTL has managed to transfer knowledge from Domain Two to Domain One, which can
e observed in the latent space in Fig. 14, although it is noted that the uncertainty in the mapping has led to some observations
eing mislabelled. Compared to HFA and the single domain approaches, KBTL has provided significant benefits to Domain One.
owever, in Domain Two, KBTL is slightly outperformed by both HFA (where Domain One was the source domain) and by the
VM, 95.8% compared to 96.9% and 97.8%. In this case study, the entropy for the projection matrix for Domain One was 778 nats
ompared to 183 nats in Domain Two. The entropy indicates that their is likely to be lower information content in Domain Two
or learning the shared latent space than from Domain One, which may be due to the lower dimension of Domain One’s original
16
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Fig. 13. Visualisation of the Gnat aircraft training feature spaces for Domains One and Two. The top left and bottom left panels show the stacked log
transmissibilities of Domains One and Two respectively, with the vertical lines indicating the start of a new transmissibility. The right panel presents a comparison
of the first two principal components for each domain: Domain One (×) and Domain Two (□).

3.3. Eight degree-of-freedom systems: feature space heterogeneity arising from measurement properties

The third application considers a population of eight degree-of-freedom systems, one experimental, displayed in Fig. 16 and four
numerical. Heterogeneous transfer learning is required, as the feature spaces for each domain are formed from frequency response
functions (FRFs) where changes in the measurement properties, namely the sample frequencies and sample time, have led to the
FRFs having a different number of frequency bins with different spacing within the same frequency range.

The four simulated eight degree-of-freedom systems in the population were generated using random mass, damping and stiffness
coefficients, drawn from Gaussian distributions where the mean values were defined as those identified by Bull et al. from the
experimental structure in [7]; where the interested reader can find more details about the analysis and the model structure. The
experimental dataset comes from experiments performed at Los Alamos National laboratory [4]. The sampled coefficients for the
𝑖th member of the population are defined as 𝑚(𝑖)

𝑗 ∼  (𝑚𝑗 , 0.05 × 𝑚𝑗 ), 𝑐
(𝑖)
𝑗 ∼  (𝑐𝑗 , 0.05 × 𝑐𝑗 ) and 𝑘(𝑖)𝑗 ∼  (𝑘𝑗 , 0.05 × 𝑘𝑗 ) ∀ 𝑗 = 1 ∶ 8.

The measurement properties for each member of the population are defined in Table 4 (numerical and experimental). Frequency
response functions were obtained in a similar manner to the experimental structure [4] (Fig. 16), where a Gaussian noise input
was applied as a force to the first mass and the acceleration response measured at the eighth mass, with the simulated noise being
normally distributed with zero mean and a signal-to-noise ratio (in terms of variance) of 40 dB. The FRFs for each domain were
truncated to 0–128 Hz, as this is where the main structural resonances occurred.

The structural health monitoring problem  was classifying damage extents, where damage was simulated through a reduction
in stiffness at spring 𝑘5 [7], as simulated in the experimental case study [4]. The damage extents correspond to a reduction in
stiffness of 7%, 14% and 24%, i.e. 𝑌 = 0 when undamaged, 𝑌 = 1 when 𝑘𝑑5 = 0.93𝑘5, 𝑌 = 2 when 𝑘𝑑5 = 0.86𝑘5 and 𝑌 = 3 when
𝑘𝑑5 = 0.76𝑘5. The experiments only considered class labels 𝑌 = 0 and 𝑌 = 3, where four observations were obtained for each class.
In contrast, 50 observation were simulated for each class label for the numerical systems. In the following case study, Domains One
to Four are simulated, where the training data for each domain comprises of nine observations of 𝑌 = 0, eight of observations of
𝑌 = 1, eight of observations of 𝑌 = 2 and nine observations of 𝑌 = 3. For the experimental domain – Domain Five – only a single
observation of 𝑌 = 0 and 𝑌 = 1 are used in training. An independent validation dataset was also constructed with the same number
of different observations as the training set, and this was used to cross-validate the parameter 𝑅, the dimension of the latent space
in KBTL. Finally, the remaining data in each domain are used as an independent test set.

The KBTL hyperparameters were defined as (𝜅𝜆, 𝜃𝜆) = (𝜅𝛾 , 𝜃𝛾 ) = (𝜅𝜂 , 𝜃𝜂) = (1 × 10−3, 1 × 10−3), reflecting the small sample sizes
in each domain. The latent space standard deviation was 𝜎ℎ = 5 due to the expected uncertainty in mapping, with a small margin
of 𝜈 = 1 to aid separability. All the discriminative approaches in this case study are trained in a one-vs-all manner. Cross-validation
was performed on the independent validation dataset in order to select 𝑅, where the optimal 𝑅 = 10. The classification results for
each approach are shown in Fig. 17, and the entropy of the projection matrices in Fig. 18.

In terms of average accuracy KBTL outperforms all the other methods, with an average testing accuracy of 98.5%. HFA, trained
using Domain Five as the source domain, is the closest in terms of average performance, with an accuracy of 98.3%. However, this
model does not make any predictions for Domain Five, where observations of classes one and two are not present, as this would
mean the source and target domains are the same. In cases where HFA is trying to make classification predictions on Domain Five,
the performance drops to a maximum of 92.8% (when Domain One is considered the source domain). On a domain-by-domain basis,
KBTL achieves 100% accuracy on two domains, Domain Four and Five, with comparable performance to HFA on Domains One to
17
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Fig. 14. Gnat aircraft case study. A visualisation of the expectation of the posterior latent space for the training (top) and testing (bottom) data, where 𝐻[∶, 1]
and 𝐻[∶, 2] are the first and second dimensions of the 𝑅 = 2-dimensional shared latent space . The left panels depict the one-vs-all discriminative classifiers
(mean (-) and three standard deviations (- -)) for each class (indicated by the colour) as well as the predicted label MAP estimates. The right panels present the
true labels. Each domain is denoted by a different symbol for Domains One (×) and Two (□).

Fig. 15. Gnat aircraft case study: testing accuracies. HFA(𝐷𝑖) refers to the results where the 𝑖th domain is considered the source domain.
18
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Fig. 16. Experimental eight degree-of-freedom system [4].

Table 4
Measurement properties of the eight degree-of-freedom structures.

Domain,  1 2 3 4 5a

Sample frequency, Hz 512 1024 512 1024 400.25
Sample time, s 7 8 10 15 8
Feature space dimension 897 1025 1281 1921 1025

aDenotes the domain for the experimental structure.

Fig. 17. Eight degree-of-freedom case study: top panel displays the testing accuracies and the bottom panel shows the average accuracy across all domains.
HFA(𝐷𝑖) refers to the results where the 𝑖th domain is considered the source domain.

have all contributed to learning the latent space. As expected Domain Five has the lowest entropy, where Domains One to Four have
provided benefits in classifying Domain Five. It is interesting to note that the RVM classifier achieves near perfect performance on
Domains One to Four, showing that there is enough information in each simulated domain to construct a conventional classifier.
However, the RVM classifier only achieves an accuracy of 50% on the experimental Domain Five, demonstrating the need for transfer
learning.

4. Conclusions

The ability to perform classification for populations with inconsistent feature spaces means a wider range of population types
(and feature types) can be considered in population-based SHM. A sparse Bayesian approach to heterogeneous transfer learning [10],
as applied in this paper, allows label information to be shared and transferred, within, and between such populations of structures.
This advance in technology means that a lack of available health state data for a particular structure of interest can be overcome
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Fig. 18. Eight degree-of-freedom case study: total entropy of the projection matrix 𝐴𝑡 per domain.

by considering the shared label set in a population, even when the features from one structure are different to others in the group,
e.g. one having ten natural frequencies and the other six.

The sparse Bayesian method applied in this paper — KBTL [10] — extends ideas from relevance vector machines, with the
addition of a projection and dimensionality reduction step, mapping the data from each structure onto a shared latent space. This
projection is inferred in a sparse manner, meaning that relevance vectors in the mapping are identified. In the shared latent space, a
joint classifier is inferred, meaning that label information from the population is shared in inferring one set of classifier parameters.
As a result, label information can also be transferred to structures where certain label classes were missing in training.

The method has been demonstrated as effective in both binary and multi-class settings. In addition, the approach has been
demonstrated on three applications; a population of simulated and experimental shear-structures with different numbers of storeys,
an experimental Gnat aircraft structure where the number of sensors was different between domains, and a population of simulated
and experimental eight degree-of-freedom systems where differing measurement properties led to a inconsistent feature space.
In each application, KBTL has been able to increase the classification performance in domains with sparse label observations,
particularly if observations of a class label were not available in training. In addition, the approach produced the highest average
classification accuracy on all the multi-class classification case studies, when compared to Heterogeneous Feature Augmentation
(HFA), and either SD-KBTL or RVM classifiers. However, it is noted that improved average performance, and increased classification
accuracy in particularly sparsely-labelled domains, was often countered by a slight reduction in classification performance in
other domains when compared to HFA. However, KBTL has the ability to learn one classification model for all domains (i.e. it
is a multi-domain method), reducing the number of classification models that require training, and simplifying the application
of heterogeneous transfer learning for the PBSHM context. In contrast, HFA is a single source domain to single target domain
approach, meaning that selection of the most appropriate source domain would be required, or some ensemble-based approach,
leading to technical challenges in implementing the method over a large population of structures. Furthermore, HFA often struggled
to perform well in scenarios where label observation sparsity occurred in a particular domain, meaning its ability to transfer label
knowledge was less optimal than KBTL. Overall, the results show that KBTL is a technique capable of creating a classifier that
generalises across a population, shares label information, and allows labels to be transferred between members of the population
— all goals of PBSHM.

A significant advantage of this approach is that physics-based simulations can be used to create label information that can be
transferred to operational structures. Both case studies have demonstrated the potential for using data from a range of simulated
structures, which may not be exactly the same as the experimental structure of interest, in labelling a real world structure with
limited label knowledge. This ability to robustly use simulation data, is a powerful advancement in PBSHM, as typically simulations
will be difficult to validate, or may not match the real system closely, but can be useful in transferring information to a structure
of interest. As a result, simulations can be used in a more robust manner, overcoming the lack of available health-state data in
data-driven SHM.
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Appendix A. Kernelised Bayesian transfer learning nomenclature

An overview of the main nomenclature used in kernelised Bayesian transfer model are summarised below:

Objects and spaces
 Domain
 Task
 Feature space
 Label space
 Shared latent space
𝑅 Dimension of the shared latent space 
Data, latent variables and model parameters
𝑋 A finite set of feature observations from a feature space 
𝑌 A finite set of label observations from a label space 
𝐷 A finite set of observed data, i.e. label observations
𝐾 Kernel matrix
𝛩 Set of latent variables and model parameters
𝐴 Projection matrix
𝐻 Matrix in the shared latent space , formed from 𝐻 = 𝐴𝖳𝐾
𝑏 Bias scalar for the discriminative function
𝒘 Vector of weights for the discriminative function
𝒇 Discriminative function vector in the shared latent space, formed from 𝒇 = 𝐻𝖳𝒘 + 𝟏𝑏
Priors and hyperparameters
𝛯 Set of priors
𝛬 Prior precision matrix for the projection matrix 𝐴
𝜂 Prior precision vector for the weight vector 𝒘
𝛾 Prior precision scalar for the bias 𝑏
𝜻 Set of hyperparameters
𝜅𝜆 Shape hyperparameter for the prior precision matrix 𝛬
𝜃𝜆 Scale hyperparameter for the prior precision matrix 𝛬
𝜅𝜂 Shape hyperparameter for the prior precision vector 𝜂
𝜃𝜂 Scale hyperparameter for the prior precision vector 𝜂
𝜅𝛾 Shape hyperparameter for the prior precision scalar 𝛾
𝜃𝛾 Scale hyperparameter for the prior precision scalar 𝛾
𝜎2ℎ Variance of the latent space
𝜈 Non-negative margin

Appendix B. Posterior expectations

Each of the posterior expectations (i.e. ⟨𝑓 (⋅)⟩) are,

⟨𝐴𝑡[∶, 𝑠]2⟩ = 𝜇(𝐴𝑡[∶, 𝑠])2 + diag
(

𝛴(𝐴𝑡[∶, 𝑠])
)

(B.1a)

⟨𝐴𝑡⟩ = 𝜇(𝐴𝑡) (B.1b)

⟨𝐻𝑡𝐻
𝖳
𝑡 ⟩ = 𝜇(𝐻𝑡)𝜇(𝐻𝑡)𝖳 + 𝛴(𝐻𝑡) (B.1c)

⟨𝐻𝑡⟩ = 𝜇(𝐻𝑡) (B.1d)

⟨𝒘𝑙𝒘𝖳
𝑙 ⟩ = 𝜇(𝒘𝑙)𝜇(𝒘𝑙)𝖳 + 𝛴(𝒘𝑙) (B.1e)

⟨𝒘𝑙⟩ = 𝜇(𝒘𝑙) (B.1f)

⟨𝑏2𝑙 ⟩ = 𝜇(𝑏𝑙)2 + 𝛴(𝑏𝑙) (B.1g)

⟨𝑏𝑙⟩ = 𝜇(𝑏𝑙) (B.1h)

⟨𝑏𝑙𝒘𝑙⟩ = 𝜇(𝑏𝑙)𝜇(𝒘𝑙) + 𝛴(𝑏𝑙 ,𝒘𝑙) (B.1i)

⟨𝜼𝑙⟩ = 𝜅(𝜼𝑙)𝜃(𝜼𝑙) (B.1j)

⟨𝛾𝑙⟩ = 𝜅(𝛾𝑙)𝜃(𝛾𝑙) (B.1k)

⟨𝒇 𝑡,𝑙[𝑖]⟩ = 𝜇(𝒇 𝑡,𝑙[𝑖]) +
𝜙(𝜶𝑡,𝑙[𝑖]) − 𝜙(𝜷𝑡,𝑙[𝑖])𝛴(𝒇 𝑡,𝑙[𝑖]) (B.1l)
21

𝒛𝑡,𝑙[𝑖]



Mechanical Systems and Signal Processing 167 (2022) 108519P. Gardner et al.
𝜶𝑡,𝑙[𝑖] =
a(𝒇 𝑡,𝑙[𝑖]) − 𝜇(𝒇 𝑡,𝑙[𝑖])

𝛴(𝒇 𝑡,𝑙[𝑖])
(B.1m)

𝜷𝑡,𝑙[𝑖] =
b(𝒇 𝑡,𝑙[𝑖]) − 𝜇(𝒇 𝑡,𝑙[𝑖])

𝛴(𝒇 𝑡,𝑙[𝑖])
(B.1n)

𝒛𝑡,𝑙[𝑖] = 𝛷(𝜷𝑡,𝑙[𝑖]) −𝛷(𝜶𝑡,𝑙[𝑖]) (B.1o)

where 𝛴(𝑏,𝒘) denotes the cross covariance and 𝜙(⋅) and 𝛷(⋅) are standard Gaussian probability and cumulative density functions
respectively.
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