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A B S T R A C T

Population-based structural health monitoring (PBSHM) offers a new viewpoint for structural
health monitoring (SHM), allowing diagnostic information to be shared across populations
of structures. By extending the set of available damage observations, a population-based
approach can diagnose damage previously unseen on a structure of interest by leveraging
damage information from other structures in the population. These technologies therefore
provide significant benefits for making SHM practicable in a variety of industrial settings. It is
proposed that PBSHM methodologies must be comprised of tools to assess similarity coupled with
algorithms that perform knowledge transfer. The similarity tools are important for identifying
whether an SHM task should be attempted for a given population by assessing both the
structural similarities between members of a population and similarities in their data spaces.
An abstract representation of structures in a graphical domain is presented as an objective
way of assessing structural similarity, with distance metrics utilised for assessing data-space
similarities. Knowledge transfer is performed using a branch of transfer learning called domain
adaptation. By determining if members of a population are similar in a structural and data-
space sense, the risk of negative transfer can be reduced; whereby domain adaptation reduces
classification performance. This paper demonstrates a PBSHM methodology for transferring
knowledge within a heterogeneous population (a group of non-identical structures). Specifically,
the PBSHM methodology is shown to transfer localisation labels from a Gnat aircraft wing to
an unlabelled Piper Tomahawk aircraft wing dataset, resulting in 100% classification accuracy.

. Introduction

Obtaining damage state data from a structure of interest, prior to the start of a monitoring campaign, is often infeasible because
f economic and safety concerns. This issue means that classification-based approaches to data-based structural health monitoring
SHM) are not practicable in the majority of industrial scenarios, limiting data-based methods to novelty detection. Population-based
tructural health monitoring (PBSHM), seeks to overcome this challenge by considering the available data from across a population
f structures, which may include both physical and numerical systems [1]. By expanding the available data in this way, observations
f damage from previous monitoring campaigns on similar structures or from model-based simulations, can be utilised in diagnosing
nd classifying damage on a new structure of interest from the start of its monitoring campaign.
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It is important to note that one cannot simply train a classifier using data from one structure and hope the classifier will generalise
o data from another. This is because no two structures are ever structurally exactly identical (at least as a result of manufacturing
olerances), nor will they operate in exactly the same environmental conditions (even if located close to each other). These differences
ean that the same feature data from any two structures will not be generated from the same underlying distribution, breaking the

ssumption of machine learning classifiers that training and testing data are generated from the same underlying distribution. This
ssue becomes worse when a heterogeneous population is considered (i.e. a population of non-identical structures), as the feature
nd label spaces may not even be consistent, let alone generated from the same underlying distribution. To overcome these issues,
ransfer learning in the form of domain adaptation is utilised, mapping labelled source datasets onto unlabelled target datasets, such
hat their distributions are harmonised [1].

Although there is a trend to move towards using more extensive sensor networks on operational aircraft for the purpose of
ealth management, there is yet to be wide uptake in industry for various reasons. In addition, even if large quantities of data can
e collected from in-service aircraft, much of that data will still relate to the aircraft operating in its normal, healthy condition. This
ssue means that very few observations from these large datasets will be associated with damage or structural failure, as aircraft are
esigned and regulated to high safety tolerances and reliability standards. As a result, observations of damage patterns will still be
are, meaning that a population-based view of SHM will still be required even into the future.

This paper proposes an overarching methodology for performing PBSHM on heterogeneous populations, with the ideas based on
he foundations of PBSHM stated in a series of four papers [2–5]. Specifically, the proposed approach is demonstrated to perform
amage localisation (of inspection panel removals) on a Piper Tomahawk aircraft wing using damage-state data from a Gnat aircraft
ing. An abstract representation of structures in a graphical domain is utilised to determine where the two structures are structurally

imilar by identifying maximum common subgraphs. These maximum common subgraphs form potential candidate dataset pairings
or the Gnat and Piper Tomahawk. Distance metrics are analysed for each of these pairings, identifying which is most similar from
data-space perspective, and least likely to lead to negative transfer. Domain adaptation is performed, mapping the Gnat and Piper
omahawk datasets into a latent space where a classifier trained on the (labelled) Gnat dataset is shown to generalise and classify
he (unlabelled) Piper Tomahawk dataset with 100% classification accuracy. A MATLAB implementation accompanies this paper:
ttps://github.com/pagard/EngineeringTransferLearning.

.1. Related work

PBSHM has also been termed fleet-based monitoring in the literature. For example, Fink et al. outline in [6], the challenges and
uture directions for deep learning in prognostics and health management (PHM), stating that fleet PHM is a potential solution to
ssues in applying deep learning for health management. They argue that transfer learning, in the form of domain adaptation, will
e a key component for performing fleet PHM; however, this paper does not propose any particular methodologies itself.

Within fleet-based monitoring, there are approaches that are developed solely around a model or digital twin. For example,
accaria et al. perform fleet monitoring on a population of simulated aircraft engines [7]. Their method utilises an adaptative
hysics-based model (as a digital twin) to simulate faults that can be compared with flight data. Fleet data are normalised based
n the engine model’s baseline normal condition, and novelty detection is performed. Given these results, fault identification is
onducted by comparing the correlations of the fleet data signals to a digital twin over the average engine. Zaccaria et al. expanded
his idea by using the physics-based model to train a Bayesian network classifier to diagnose fleets of gas turbines [8]. In a similar
pproach to [7], Moksadur et al. define a multi-level method for gas-turbine fleet monitoring, utilising nominal and updated physics-
ased models to generate baseline datasets for the population [9]. Although promising, these approaches are not experimentally
alidated, and may struggle to generalise when operational data are presented. The methods also differ to that proposed in this
aper, as they rely on some baseline model, which must be valid for the complete population.

In contrast to using a model as a baseline for fleet monitoring, Moens et al. generate data from a ‘smart maintenance living lab’
f seven machines, which are used to train a more robust machine learner [10]. This is similar to the idea of a form, a machine
earning model that captures a population’s ideal response as well as its variations [2], and hence is more robust when making
opulation-based inferences. Basora et al. develop a semi-supervised anomaly detection technique for aircraft fleets, demonstrated
n real sensor data from a cooling-unit system on a modern wide-body aircraft from a major European airline [11]. At its core,
he technique trains several deep neural network autoencoders on baseline data in order to perform novelty detection. A similar
ethod by Michau et al. proposes a hierarchical extreme learning machine, constructed from a stack of autoencoders, as a way of
etermining similarity between datasets in order perform anomaly detection at a fleet level [12]. All of these methods differ from
he approach proposed in this paper in that they only perform novelty detection, and all rely on some baseline that captures the
ormal condition of the population.

Some authors have pointed out that links and similarities between members of a population need to be captured as part of a
leet-based approach. Medina-Oliva et al. take this viewpoint, developing an ontological approach to fleet-level monitoring, helping
o link and manage relevant knowledge about a population — particularly useful for a heterogeneous population [13]. Unlike the
pproach proposed here, the authors do not use the ontology to perform any inferences, and instead suggest how it might be used.
imilarly, [3] outlines the abstract representation of structures as graphs but does not demonstrate the process of using the graphical
pace to aid inferences, as demonstrated in this paper.

Ideas of structural similarity have been adapted into algorithms for population-based inferences. For example, Hendrickx et al.
ropose an anomaly detection method for performing condition monitoring over a population of machines, demonstrated on a
2

opulation of ten experimental electrical drivetrains [14]. Within their methodology, similar machines are grouped by hierarchically
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clustering the Euclidean distance or dynamic time-warping measure between any two machine’s datasets in the fleet. The method
expects that large groups of structures represent machines operating in their normal condition, with an anomaly score assigned to
each machine based on the fraction of the total machines not in its cluster. The method proposed in this paper, is formed from
similar ideas; however, the similarity between two structures’ datasets are determined from a statistical-distance point of view.
Physics-Informed Multi-source Domain Adversarial Networks (PhyMDAN) is another method that seeks to use structural similarity;
however, in this case the method creates weights over datasets based on their structural attributes that are used to weight their
importance in a deep learning-based domain adaptation approach [15]. The authors state that any structural attribute could be
used to form the weight, and do not develop a principal to guide other applications.

Other related literature involves the topic of transfer learning, and specifically domain adaptation [1,16–22]. A large portion
f the literature utilises domain adaptation in order to overcome changing loading conditions in condition monitoring [18–20,22].
owever, domain adaptation has also been utilised in a population-based setting [1,4,21,23]. Two notable examples are Gardner
t al., who demonstrated the role of domain adaptation in transferring localisation labels between numerical and experimental shear-
tructures [1], and Bull et al., where damage detectors were transferred between a population of six experimental tailplanes [23].
either of these approaches seek to develop methods for avoiding negative transfer by incorporating measures of similarity, as
roposed in this paper.

The outline of this paper is as follows. Section 2 provides an overview of population-based structural health monitoring, outlining
he key principles of assessing similarity between members of a population and transferring knowledge between them. The case study

is introduced in Section 3, where the SHM task is to transfer knowledge about localisation of damage from a Gnat aircraft wing to a
Piper Tomahawk aircraft wing (with the two wings forming a heterogeneous population). The proposed methodology is presented
in Section 3.2, whereby localisation knowledge is successfully transferred, allowing damage to be localised on the Piper Tomahawk
wing, with verification of the approach performed in Section 3.3. Lastly, conclusions are outlined in Section 4.

2. Population-based structural health monitoring

Population-based structural health monitoring (PBSHM) seeks to improve diagnostic capabilities, both at a population and/or
individual level, by harnessing measured data from across individuals in a population [2–5]. By combining datasets from the
complete population (which can include numerical simulations as well as real world datasets), a PBSHM methodology is able
to expand the available observations of health-states of interest. As a result, a PBSHM approach can produce robust diagnostic
predictions on structures in the population where no labelled data were available at the start of the monitoring campaign —
achievable because labelled observations can be leveraged from other members of the population. The ability to diagnose health-
states unobserved in training for a particular structure of interest, means that PBSHM overcomes a significant limitation of traditional
data-based SHM approaches, where inferences are limited to novelty detection in the absence of labelled training data.

For datasets to be shared between members of a population, notions of similarity and transferability must be defined. The aim
of any PBSHM method is to transfer knowledge between members of a population, forming some shared model that can diagnose
them [4]. Before this process is performed, the engineer must determine if structures in the population, and their datasets, share
similarities that can be harnessed at a population level [3,24]. The more dissimilar any two structures are, the more at risk the
PBSHM approach is of negative transfer [4] — a term, in a PBSHM context, used to describe the phenomenon where utilising a
PBSHM approach reduces the performance when compared to an SHM approach on an individual structure. As a consequence,
the engineer requires a set of PBSHM tools for determining when transfer between structures is advisable, given some notation of
similarity between the structures and their datasets.

There are two population types that can be considered in a PBSHM approach. A homogeneous population is one where all the
structures are nominally identical and are expected to exhibit similar behaviour; for example, a wind farm containing wind turbines
of the same model type would be considered a homogeneous population. When members of a population cannot be classed as
nominally identical, the group are referred to as a heterogeneous population. There are a multitude of reasons for differences in a
population, with significant factors being the topology of the structures, their material properties and their geometry [3,4]. For
example, a fleet of helicopters that were built to the same model specification, but with various custom modifications for clientele,
would be classed as a heterogeneous population. Intuitively, PBSHM is generally easier to perform on homogeneous populations
than heterogeneous populations, where there will be larger degrees of dissimilarity in the group of structures and their datasets. The
following sections outline approaches that cover the two main aspects of a PBSHM methodology: assessing the similarities between
structures in a population, and methods for transferring knowledge between structures.

2.1. Structures as graphs: assessing structural similarities

PBSHM requires the ability to assess the similarities between any two structures in a population, to determine whether knowledge
transfer is advisable. As proposed by Gosliga et al. [3], an abstract representation of structures can be defined, meaning any structure
can be converted into a graphical representation. In this graphical domain, metrics can be defined allowing the engineer to quantify
the level of similarity between members of a population. More powerfully, graph-matching algorithms can be applied in this space of
structures, meaning that substructures found in all members of a population can be identified. By locating these shared subsystems,
it is possible to identify what knowledge can be shared in a population and what aspects of the dataset are most useful for PBSHM.
3

Details of this abstract representation of structures are defined in [3], with the following section covering the main concepts.
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Fig. 1. Schematic of the Gnat aircraft wing and associated irreducible element model (not to scale).

An abstract representation of structures is formed in two stages. First, the engineer converts the structure into an irreducible
element (IE) model. This process decomposes the structure into its essential structural elements, typically at the spatial resolution of
the SHM problem. It is important to note that an IE model is not intended to capture every dimension and property of a structure, but
only those that are significant for the PBSHM context. Elements are typically components with well-established dynamic behaviour,
such as beams and plates, with some associated geometry and material properties. The relationships between elements describe both
the physical relationships between these components e.g. bearing, bolts etc., and more abstract relationships such as perfect joints
and boundary conditions. One of the main considerations when constructing an IE model is topology. The topology of the structure
is determined by the physical relationships between each element in the IE model, and is particularly useful when performing
localisation tasks, where corresponding topology is required between members of the population for localisation to be possible. An
illustration of the IE models for the aircraft wings in this paper are shown in Figs. 1 and 2 and are outlined in detail in Section 3.2.

The next stage transforms the IE model into an attributed graph (AG) such that a metric space can be defined and graph-matching
algorithms utilised. Each element in the IE model becomes a node in the graph, with each relationship becoming an edge (and
boundary conditions forming node-edge pairs). The AGs of the IE models in Figs. 1 and 2 are presented in Figs. 3 and 4 respectively,
and details about their construction are provided in Section 3.2.

Once attributed graphs have been obtained for each member of the population, similarities can be quantified. Topological
similarity can be measured by assessing the largest common substructure in the population; with the largest substructure for
homogeneous populations being the entire structure itself. The graphical representation of structures means that substructures are
represented as subgraphs (with structures represented as graphs). As a result, the problem of determining the largest common
substructure between two structures can be posed as identifying the largest common subgraph between two parent graphs. In order
for the largest common subgraph to retain validity in a physical sense, the largest common subgraph must also be a connected and
induced subgraph. An intuitive interpretation of these properties is that all the elements in a substructure must be connected (rather
than two disconnected substructures) and that all the joints in the parent structure should appear in any substructure (for more
mathematical definitions the reader is referred to [3]). The largest subgraphs that meet these conditions are defined as maximum
common subgraphs (MCSs) and are said to be topologically equivalent.

One of the most widely-used methods for identifying all the connected, induced subgraphs between two parent graphs is the
4

modified Bron–Kerbosch (BK) algorithm [3]. Once all these subgraphs are identified they can be sorted by size and the maximum
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Fig. 2. Schematic of the Piper Tomahawk aircraft wing and associated irreducible element model (not to scale).

common subgraph(s)1 reported. Given the structural and physical importance of boundary conditions, the set of maximum common
subgraphs can be reduced to the subset where the boundary condition nodes are aligned — this set of subgraphs are defined as
structurally equivalent. A similarity measure can be defined over the set of maximum common subgraphs, between all pairwise
combinations of structures in a population. In [3], the Jaccard distance is used, where a threshold on the Jaccard distance can
be used to define a network of similar structures, which in turn can form a population for PBSHM. In addition to assessing the
topological distance between a population of structures, the attributes can also be considered. Subgraphs can be identified where
the attributes of the subgraph from each parent also match [3]. This condition can be used to rule out substructures that do not
share key attributes, such as material properties, further enhancing the chance of positive transfer of knowledge between structures.

In summary, a graphical representation allows structures to be converted into a graphical domain, where maximum common
subgraphs can be determined. In addition, distance metrics can be applied in this graphical domain providing a more objective
interpretation of how similar structures are, helping to determine whether any set of structures should be considered as a population
for a PBSHM methodology. As well as quantifying the level of topological (or structural) equivalence between structures, attributed
graphs also aid in quantifying the differences between other key properties such as shared geometry and material properties. As a
consequence, this process of identifying populations of similar structures via graphical representations helps form PBSHM problems
that have high chances of positive knowledge transfer.

2.2. Transferring knowledge between structures

The main benefit of a PBSHM approach is the ability to transfer knowledge about health states between different members of
the population, overcoming issues associated with a lack of available labelled data that hinder data-driven methods from being
implemented in industrial contexts. Knowledge transfer may take on various forms in a PBSHM methodology, from sharing datasets
in joint hierarchical statistical models of a population [25] to ideas of forms [2] and multi-task learning [26,27]. In this section, the
main emphasis will be transfer learning methodologies that enable knowledge from a set of source datasets to be used in improving

1 There may be several subgraphs of the same size between two graphs.
5
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Fig. 3. Attributed graph for the Gnat aircraft wing. White and grey circles denote structural and boundary nodes respectively.

Fig. 4. Attributed graph for the Piper Tomahawk aircraft wing. White and grey circles denote structural and boundary nodes respectively.

inferences in some set of target datasets [4]. It is argued that the aims of transfer learning technologies are most closely aligned
with the motivation behind PBSHM. That is, PBSHM seeks to overcome the issue associated with a lack of available labelled data
for a particular structure of interest by leveraging and transferring knowledge in the form of labelled data from other structures
in a population. More specifically, this aim is closest to a branch of transfer learning called domain adaptation, where datasets are
adapted in a manner that allows a classifier constructed on source datasets to generalise to target datasets [1,28–30].

There are many types of domain adaptation methodologies — from kernel-based approaches [31–34] to neural network-based
algorithms [35–37]. The main concept behind all these approaches is the idea of harmonising datasets such that a classifier trained on
the labelled source datasets will generalise to the unlabelled (or partially-labelled) target datasets, and hence labels can be transferred
and assigned to the target datasets. The process of harmonisation usually takes the form of identifying a mapping (or potentially
some set of mappings) that transforms the source and target datasets such that they can both be considered samples from the same
underlying generative distribution. It is interesting to note that some of the simplest approaches to domain adaptation seek to align
only the low-order statistical moments of the two datasets [30], which can be seen as being a form of standardisation for promoting
transfer learning. Each domain adaptation approach is therefore designed around a variety of assumptions about the similarities
between the source and target datasets, e.g. the source and target are derived from the same form of parametric distribution [38],
the marginal [31] or joint distributions [32] are different, or that the datasets are observations from the same manifold [33].
6
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Table 1
Area of inspection panels on the Gnat aircraft wing [41].

Panel 1 2 3 4 5 6 7 8 9

Area (m2) 0.0221 0.0496 0.00825 0.08 0.0176 0.00825 0.0392 0.0468 0.0234

Table 2
Area of inspection panels on the Piper Tomahawk aircraft wing [43].

Panel 1 2 3 4 5

Area (m2) 0.0254 0.0254 0.0254 0.0254 0.0254

In a PBSHM context, understanding the expected similarities between datasets from each structure is therefore a very important
tep, particularly in determining whether domain adaptation methods will work, and in deciding the most appropriate algorithm for
given scenario. As aforementioned, the abstract representation of graphs helps in identifying the structural similarities between
embers of the population. In addition to this process, metrics of the data space are also important for determining how similar any

wo feature spaces from two different structure may be [24]. It is intuitive that datasets that are ‘closer’ in terms of their statistical
roperties are more likely to be transferable. Any PBSHM approach must therefore perform transforms that maximise similarities
etween datasets before assessing how similar the source and target datasets are via some quantitative metric. If these metrics
tate that the datasets are similar enough, and all prior physical knowledge (particularly from the graph-matching process) suggests
hat knowledge transfer is possible, then the appropriate domain adaptation approach can be performed and a classifier trained on
he (transformed) source datasets will generalise to the (transformed) target datasets. The process of classifying the target datasets
llows label knowledge to be transferred from the source structures to the target structures.

. Heterogeneous population of aircraft wings: Gnat and Piper Tomahawk

Heterogeneous populations pose a difficult set of challenges for any PBSHM methodology, as dissimilarity between structures
ncreases the risk of negative transfer. The following case study seeks to demonstrate the applicability of PBSHM to heterogeneous
opulations of real world structures, namely a population of two aircraft wings from a Gnat trainer aircraft [39–41] and a Piper
omahawk aircraft [42] (see Fig. 1 and 2 respectively, for a schematic overview). The Gnat and Piper Tomahawk aircraft wings
orm two experimental datasets that were created to demonstrate data-driven approaches to SHM; for both datasets, the task was to
erform localisation of damage in the form of inspection-panel removals. As such, neither monitoring campaign was designed with
population-based approach to SHM in mind. These datasets therefore represent an interesting case study, one in which a PBSHM

pproach is retrofitted to conventional monitoring campaigns.
The PBSHM scenario considered in this case study assumes that damage states have been observed on the Gnat aircraft wing

orming a labelled (source) dataset. The goal of the PBSHM methodology is to transfer this knowledge to the (target) Piper
omahawk wing, where no labelled damage-state data are available. In this context, performing knowledge transfer means that
amage localisation can be performed on the Piper Tomahawk using a classifier trained from the Gnat dataset without requiring
ny labelled (damage) observations on the Piper Tomahawk wing.

.1. Datasets

The Gnat wing dataset [39–41] (collected in 2003) and Piper Tomahawk wing dataset [42] (collected in 2017) were both acquired
ith the aim of localising damage on their respective aircraft wing. In both cases, the damage type considered was the removal
f inspection panels (as it was not possible to truly damage the wings); the area of the inspection panels for the Gnat and Piper
omahawk aircraft wings are presented in Tables 1 and Table 2. In order to localise this form of damage, uniaxial accelerometers
ere positioned on each wing such that they formed transmissibility ‘paths’ that covered the panels of interest. The location of

he inspection panels, accelerometers and the transmissibility paths formed by sensor pairs are presented in Figs. 1 and 2. One
ey difference between the structures (besides the main geometric and therefore topological differences) was that the Gnat aircraft
ataset was acquired when the wing was attached to the complete aircraft, whereas the Piper Tomahawk experiments involved
ounting the wing (as an isolated component) to a substantial steel frame (herein referred to as the mount).

.1.1. Gnat wing dataset: Source structure
The Gnat wing dataset has been well-studied within the SHM literature [39–41,44–46]. The dataset comprises nine transmissi-

ility paths, specified in Table 3, each of which were positioned in order to maximise changes in the feature, following removal
f an inspection panel. The experiments involved exciting the structure with a broadband white-noise input applied on the bottom
urface of the wing below Panel Four via an electrodynamic shaker. Each transmissibility covered a frequency range of 1024–2048 Hz
ontaining 1024 spectral lines, with the real and imaginary parts being converted into magnitude and phase and the phase then
eing discarded [41].

The damage scenarios covered each inspection panel being removed and replaced sequentially, with the torque of the fasteners
7

eing monitored between configurations. The test strategy was designed around three transducer groups: A, B and C, each covering
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Table 3
Accelerometers used to form transmissibilities for the Gnat wing dataset and their associated inspection panel [41].

Transmissibility 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9
Reference accelerometer AR AR AR BR BR BR CR CR CR
Response accelerometer A1 A2 A3 B1 B2 B3 C1 C2 C3
Inspection panel P1 P2 P3 P4 P5 P6 P7 P8 P9

Table 4
Overview of the test sequence for the Gnat dataset.

Damage N P1 P2 P3 N P4 P5 P6
Observations 100 100 100 100 100 100 100 100
Label 𝑦𝑠 = 0 𝑦𝑠 = 1 𝑦𝑠 = 2 𝑦𝑠 = 3 𝑦𝑠 = 0 𝑦𝑠 = 4 𝑦𝑠 = 5 𝑦𝑠 = 6

Damage N P7 P8 P9
Observations 100 100 100 100
Label 𝑦𝑠 = 0 𝑦𝑠 = 7 𝑦𝑠 = 8 𝑦𝑠 = 9

three inspection panels. The test sequence for each transducer group involved 100 observations of the normal condition, followed
by 100 observations of each of the three inspection panels in the group. In the original Gnat dataset, variability was assessed by
repeating the test sequence for each transducer group twice; however, this case study only considers one of the repeat test sequences
for each transducer group as each repeat is a new observation of the underlying generative distribution and would require some
form of domain adaptation before performing PBSHM (such analysis is presented in [46]). The test sequence of the Gnat dataset
used in this case study is presented in Table 4, totalling 1200 observations.

The Gnat dataset forms the source dataset in the PBSHM (and transfer learning) context considered. The aim is to transfer a
ubset of five transmissibilities and their damage localisation labels onto the Piper Tomahawk dataset (which consists of five damage
ocalisation states in addition to the normal condition). The complete Gnat dataset is formed from the transmissibility feature space
𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9} ∈ R1200×9216 and the label set 𝒚𝑠 ∈ R1200.

3.1.2. Piper tomahawk wing dataset: Target structure
The Piper Tomahawk dataset is acquired from thirteen transmissibility paths, outlined in Table 5, where either two or three

transmissibility paths cover each panel. In this case study, only five transmissibility paths are considered {𝑇2, 𝑇5, 𝑇6, 𝑇10, 𝑇13}, with
the rest removed from the dataset. The five transmissibilities were chosen as each one had the most direct path over their respective
inspection panel of interest. This step of reducing the transmissibility set down to one per panel aids the PBSHM process by bringing
the Piper Tomahawk dataset closer in design to that of the Gnat dataset — a challenge for retrofitting PBSHM to existing conventional
SHM datasets. An electrodynamic shaker was used to provide a broadband white-noise excitation to the underside of the wing
approximately one metre from the root end of the wing, positioned on the main spar. The transmissibilities covered a frequency
range of 0–2048 Hz with 0.5 Hz resolution; however, in this case study, the frequency range is truncated to 1024–2048 Hz to
match the Gnat dataset with the resolution downsampled to 1 Hz (meaning there are 1024 spectral lines). The process of removing
differences in the signal properties between the datasets maximises the chance of positive transfer and is an extra processing step
required for retrofitting PBSHM to these datasets. As with the Gnat dataset [41], the transmissibilities were converted from real and
imaginary into magnitude and phase, with the phase discarded.

The Piper Tomahawk dataset was initially designed to demonstrate the effectiveness of using single-site damage states as training
data for data-driven methods that are required to locate multi-site damage scenarios [42]. However, given the aims of the PBSHM
case study presented, only the single-site damage scenarios are used to form the dataset in this paper (Dataset A in [42]), as multi-site
experiments were not conducted on the Gnat aircraft.

The test sequence involved obtaining 100 observations of the normal condition before removing an inspection panel and
obtaining 100 observation of that damage state (where an observation is comprised of a five-sample averaged response). This process
was repeated, removing and reattaching all five panels in sequence, forming a dataset of 1000 observations (500 of the normal
condition and 5 × 100 damage observations). The experiments also aimed to capture the variability in the normal condition caused
by the eight screws used to attach each panel. As such, each block of 100 observations of the normal condition were comprised of five
sets of twenty observations, where the inspection panel of interest was removed and reattached (where torque was monitored using
a torque-controlled screwdriver). In addition, after each damage state, all five panels were removed and reattached. The overall test
sequence is presented in Table 6. Once the set of 1000 observations had been obtained, the sequence of tests was repeated; however,
this case study only utilises one of these repeats to avoid the problems associated with each repeat being a new observation of the
underlying generative distribution, and in turn requiring some form of domain adaptation itself [46]. For more details about the
dataset the interested reader is referred to [42].

In the context of PBSHM (and transfer learning), the Piper Tomahawk dataset is the target dataset. This means that the feature
data are unlabelled and labels must be transferred from the source structure to perform localisation. The transmissibility feature
space that forms the Piper Tomahawk dataset is {𝑇2, 𝑇5, 𝑇6, 𝑇10, 𝑇13} ∈ R1000×5120, which are renumbered such that they align with
their particular panel of interest i.e. 𝑇2 is renumbered to 𝑇1 given that it seeks to target panel 1, meaning {𝑇2, 𝑇5, 𝑇6, 𝑇10, 𝑇13} becomes
{𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5}. The dataset is considered unlabelled in the analysis, meaning that the label set 𝒚𝑡 ∈ R1000 is unknown during the
PBSHM methodology and used only to validate the approach.
8
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Table 5
Accelerometers used to form transmissibilities for the Piper wing dataset and their associated inspection panel [42]. The transmissibilities used in this case study
are denoted ∗.

Transmissibility 𝑇1 𝑇2∗ 𝑇3 𝑇4 𝑇5∗ 𝑇6∗ 𝑇7 𝑇8 𝑇9 𝑇10∗ 𝑇11 𝑇12 𝑇13∗

Reference accelerometer S14 S14 S14 S14 S14 S15 S15 S15 S15 S15 S15 S15 S15
Response accelerometer S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
Inspection panel P1 P1 P2 P2 P2 P3 P3 P3 P4 P4 P4 P5 P5

Table 6
Overview of the test sequence for the Piper Tomahawk dataset and corresponding labels [42].

Damage N P1 N P2 N P3 N P4 N P5
Observations 5 × 20 100 5 × 20 100 5 × 20 100 5 × 20 100 5 × 20 100
Label 𝑦𝑡 = 0 𝑦𝑡 = 1 𝑦𝑡 = 0 𝑦𝑡 = 2 𝑦𝑡 = 0 𝑦𝑡 = 3 𝑦𝑡 = 0 𝑦𝑡 = 4 𝑦𝑡 = 0 𝑦𝑡 = 5

3.2. Methodology

The PBSHM methodology proposed in this paper seeks to transfer localisation labels in a heterogeneous population, namely from
he Gnat aircraft wing (source) to the Piper Tomahawk wing (target). A particular challenge with these two structures is that the
ocation labels for the two wings are not in one-to-one correspondence, because of topological differences between the two aircraft
ings, i.e. there are nine localisation labels on the Gnat and only five localisation labels on the Piper Tomahawk, as there are a
ifferent number of inspection panels on each wing. This difference in topology and label space means that the PBSHM approach
ust identify the most appropriate subset of label combinations from the Gnat that can be mapped into the Piper Tomahawk and
roduce positive transfer. Essentially, the PBSHM methodology must perform a ‘nine-choose-five’ problem where the order of the
abels also matters. As a result, the PBSHM approach must select the most appropriate set of five localisation labels on the Gnat
rom over 15120 potential combinations.2 Furthermore, this process must be performed without using any labelled observations

from the target dataset. Performing domain adaptation in an exhaustive manner would be prohibitive because of the computational
cost, and the approach would still require some method or metric for selecting which result out of the 15120 classifiers performed
the best knowledge transfer, given that no target labels are available.

The proposed PBSHM methodology seeks to utilise an abstract representation of structures to identify sets of five localisation
labels from the Gnat dataset that can be considered structurally equivalent using graph matching. Once this physical knowledge
as been used to obtain a reduced subset of candidates from the source (Gnat) dataset, distance metrics are applied to determine
hich of these candidates are ‘closest’ to the target (Piper Tomahawk) dataset, with this candidate set being most likely to perform
ositive transfer. Pre-processing (that promotes transfer) and domain adaptation are subsequently performed, identifying a map into
latent space that harmonises the candidate source (Gnat) dataset and the target (Piper Tomahawk) dataset. In this latent space, a

lassifier is trained on the labelled source (Gnat) dataset and applied to the unlabelled target (Piper Tomahawk) dataset, transferring
nowledge from the source to the target structure. A schematic overview of the process is outlined in Fig. 5, with the following
ubsection providing detail on each particular process.

It is important to note that, although tailored to the case study in this paper, the general principles behind this approach are
pplicable across PBSHM scenarios. These principles are that an abstract representation of structures encodes physical understanding
nd can be used to simplify the transfer learning problem to only consider scenarios that maximise structural similarity. Distance
etrics over the datasets in a population can also be used to further simplify the problem, helping determine if the datasets are

imilar enough that knowledge transfer should be attempted. After applying these two methods for assessing similarity between
embers of the population, transfer learning can be performed and label knowledge transferred between members.

.2.1. Identifying structural similarity via maximum common subgraphs
The first stage of the PBSHM methodology is determining whether structural similarities exist between any two members of

population and locating substructures that can be considered structurally equivalent. This process is performed by creating
rreducible element (IE) models and converting them into attributed graphs (AGs), such that graph matching can be performed.
etails about constructing IE models and AGs for the aircraft-wing population are outlined below.

The Gnat and Piper Tomahawk aircraft wings are both constructed from sheet aluminium attached to riveted stiffeners along
tructural spars. From a macro-level, the main structural differences are that the Gnat aircraft has a sweptback wing with a RAE 102
odified aerofoil, and the Piper Tomahawk wing has straight leading and trailing edges with a NASA GA(W)-1 aerofoil; schematics

f the wings with nominal dimensions are shown in Figs. 1 and 2.
Before developing an IE model for a PBSHM task, it is important to define the level of resolution required. In this context, the aim

f the PBSHM method is to transfer localisation labels from the Gnat to the Piper Tomahawk wing using data from transmissibility
aths. The key structural details that must be encoded in the IE models for this context are the topology of the panels on the wing,

2 There are 126 combinations from a nine-choose-five problem, where there are 120 permutations that are possible for each of these 126 combinations,
9

eaning 126 × 120 = 15120.
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Fig. 5. Schematic overview of the population-based methodology.

Table 7
The node combinations for the maximum common subgraphs using the modified BK algorithm.
Piper M 1 2 3 4 5

Gn
at

(a) F 4 5 9 8 7
(b) F 1 6 9 8 7
(c) F 2 6 9 8 7
(d) F 3 6 9 8 7

as these form the main structural differences in the localisation label spaces between the members of the population. As a result,
each wing was divided into IEs that focus on defining an IE for each inspection panel as shown in Figs. 1 and 2. For both IE models,
the relationships between each IE are defined as ‘perfect’, as further resolution about rivet and stiffener locations are not required
for obtaining the key differences between the inspection panel locations. While the physical boundary conditions for each structure
are slightly different — the Gnat wing is attached to the fuselage and the Piper Tomahawk wing is positioned on a mount — they
are both represented as ‘ground’ in these IE models as, for this particular SHM problem, the particular details of these boundary
conditions was not deemed important for performing the localisation task. The IE models for both structures are outlined in tabular
form in Appendix A.

Once constructed, the IE models can be converted to AGs as shown in Figs. 3 and 4; in this case study, each node has been assigned
a number in relation to the inspection panel that the IE encompasses. The white nodes define structural elements, whilst the grey
nodes (and their associated edges) define boundary conditions. The AGs are now representations of the structure in a graphical
domain, where similarities can now be quantified (in relation to the PBSHM context). In this case study the important attributes for
the localisation problem are the topology of the inspection panels, and therefore further geometric and material attributes were not
incorporated into the AGs, and the graph matching was performed solely on the topology of the AGs. The modified BK algorithm
identified four connected and induced subgraph pairings outlined in Table 7, with Fig. 6 showing maximum common subgraph
(a) as an example. It is noted that the Jaccard distance between the Gnat and Piper Tomahawk structures is 0.6. The results from
the graph-matching stage mean that there are four combinations of structural elements in the Gnat that can be mapped onto the
Piper Tomahawk whilst maintaining the level of structural equivalence encoded in their respective IE models and AGs. This process
has ruled out over 99.97% of inspection panel combinations that could be mapped from the Gnat onto the Piper Tomahawk wing,
significantly reducing the computational load of the problem from 15120 potential mappings to just four. The remaining part of the
PBSHM methodology is therefore selecting which of these four maximum common subgraphs are most likely to produce positive
transfer and allow the localisation labels from the Gnat to be used to diagnose the Piper Tomahawk.

It is interesting to note that the maximum common subgraphs identified in Table 7 effectively define ‘cantilever-like’ combina-
tions of IEs in the Gnat wing. These subgraphs have been identified, as the Piper Tomahawk wing can effectively be seen as a complex
10
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Fig. 6. Maximum common subgraph (a).

Fig. 7. Pre-processing steps for the source and target datasets.

cantilevered structure. The identified subgraphs therefore match a level of physical intuition. Furthermore, it might be expected that
maximum common subgraph (a) is the most similar ‘cantilever-like’ combination of IEs that map onto the Piper Tomahawk, as (a)
defines elements along the trailing edge of the Gnat wing that will be stiffened by the spars along that edge in a similar manner to
the Piper Tomahawk elements that lie close to the main spar.

3.2.2. Assessing transferability between data spaces
The ‘closer’ two datasets are in the feature space, the more likely that domain adaptation will lead to positive transfer; this

is because the mapping needed to harmonise the two datasets will be less complex. The second key stage of the proposed PBSHM
methodology is to perform any pre-processing that might aid transfer by removing differences in the data space. After pre-processing
has been performed, the distance between the proposed feature spaces is calculated, with the ‘closest’ feature spaces being most
likely to produce positive transfer.

Pre-processing
Pre-processing is important for any machine learning approach to SHM, helping identify the most optimal features for a given

SHM task. The same principle applies, and arguably is of increased importance, in a PBSHM context. For a PBSHM scenario, any
pre-processing that will help align feature spaces prior to applying domain adaptation algorithms should be performed. In this paper
statistic alignment [30] is conducted before applying principal component analysis to each feature space; an overview of the steps
is shown in Fig. 7.

The first pre-processing step is to select the set of transmissibility paths that will form the candidate source and target data
spaces. For the 𝑗th pair of subgraphs (in the set of 15120 potential subgraphs) the structural node sets 𝐺𝑗

𝑠 and 𝐺𝑗
𝑡 are used to form

the transmissibility spaces 𝑇 𝑗
𝑠 and 𝑇 𝑗

𝑡 , where only transmissibility paths that are associated with a structural IE in the graph are
kept, i.e. for maximum common subgraph pair (a), the transmissibility spaces 𝑇 (𝑎)

𝑠 = {𝑇𝑖 ∶ 𝑇𝑖 ∈ 𝐺(𝑎)
𝑠 ∧𝑦𝑠(𝑇𝑖) ∈ 𝐺(𝑎)

𝑠 } ∈ R800×5120 where
𝐺(𝑎)
𝑠 = {4 5 9 8 7} and 𝑇 (𝑎)

𝑡 = {𝑇𝑖 ∶ 𝑇𝑖 ∈ 𝐺(𝑎)
𝑡 ∧𝑦𝑡(𝑇𝑖) ∈ 𝐺(𝑎)

𝑡 } ∈ R1000×5120 where 𝐺(𝑎)
𝑡 = {1 2 3 4 5} (where ∧ is the logical AND symbol).

As a result, the label spaces for the 𝑗th pair of subgraphs are truncated such that only the normal condition and localisation labels
associated with the 𝑗th subgraph set are kept, 𝒚𝑗𝑠 = {𝑦𝑗𝑠,𝑖 ∶ 𝑦𝑗𝑠,𝑖 ∈ {0, 𝐺𝑗

𝑠}} ∈ R800 and 𝒚𝑗𝑡 = {𝑦𝑗𝑡,𝑖 ∶ 𝑦𝑗𝑡,𝑖 ∈ {0, 𝐺𝑗
𝑡 }} ∈ R1000, where ‘0’

defines the label associated with the normal condition.
Statistic alignment — the second pre-processing step — is a set of methods that align some set of statistics about two data

spaces [30]. This group of approaches can be seen as analogous to performing standardisation in conventional machine learning
methods, aiding numerical stability and convergence of algorithms and promoting equal treatment of features. The proposed statistic
alignment step in this paper seeks to align the datasets by standardising to their respective normal condition statistics i.e. both
dataset’s normal condition statistics are aligned to have zero mean and unit variance. The reason for aligning the source and target
data by the first two moments of their normal condition is that the complete training datasets for each structure may not cover the
same range of behaviours (i.e. data from some classes may be missing) and each dataset may have different levels of class imbalance.
This problem means that the global statistics of the dataset are more likely to be affected by sample bias than the statistics of the
11
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normal condition. Furthermore, in most typical SHM applications, the initial measured data points are assumed to come from the
structure in its normal operating condition, meaning these labels are ‘known’, and the majority of data points from a system will
be from the structure in their normal condition. Formally, the approach can be defined as,

𝑇̄ 𝑗
𝑠 =

𝑇 𝑗
𝑠 − 𝜇({𝑡𝑗𝑠,𝑖 ∶ 𝑦𝑗𝑠(𝑡

𝑗
𝑠,𝑖) = 0 ∧ 𝑖 ∈ 𝑁 𝑡𝑟

𝑠 })

𝜎({𝑡𝑗𝑠,𝑖 ∶ 𝑦𝑗𝑠(𝑡
𝑗
𝑠,𝑖) = 0 ∧ 𝑖 ∈ 𝑁 𝑡𝑟

𝑠 })
(1a)

𝑇̄ 𝑗
𝑡 =

𝑇 𝑗
𝑡 − 𝜇({𝑡𝑗𝑡,𝑖 ∶ 𝑦𝑗𝑡 (𝑡

𝑗
𝑡,𝑖) = 0 ∧ 𝑖 ∈ 𝑁 𝑡𝑟

𝑡 })

𝜎({𝑡𝑗𝑡,𝑖 ∶ 𝑦𝑗𝑡 (𝑡
𝑗
𝑡,𝑖) = 0 ∧ 𝑖 ∈ 𝑁 𝑡𝑟

𝑡 })
(1b)

where 𝑇̄ 𝑗
𝑠 and 𝑇̄ 𝑗

𝑡 denote the statistic-aligned transmissibilities for the 𝑗th subgraph for the source and target. The functions 𝜇(⋅) and
(⋅) define the empirical mean and standard deviations of their arguments. The sets 𝑁 𝑡𝑟

𝑠 and 𝑁 𝑡𝑟
𝑡 define the sets of training indices

or the source and target datasets, where a 60:40 training-to-testing data split has been used (with the testing dataset treated as a
eld-out set for validation). Studies have shown this type of subset statistic alignment to be effective for PBSHM scenarios [47].

Principal component analysis (PCA) has been demonstrated to aid domain adaptation as a pre-processing step [48] and even
orms the basis of several transfer learning technologies [33,49,50]. The idea is that identifying and sorting both datasets by
omponents that maximise variance, the two spaces are brought ‘closer’ into alignment. In the PCA pre-processing step, the
tatistic-aligned transmissibility spaces are transformed via PCA (calculated on the training data) into linear subspaces 𝑋𝑗

𝑠 and
𝑗
𝑡 .

Gong et al. propose a method for promoting transfer when using linear subspaces. The approach seeks to select an optimal
umber of subspace dimensions such that the source and target subspaces are ‘well-correlated’. Gong et al. propose using a subspace
isagreement measure (SDM), outlined in Appendix B, that seeks to select only the principal components that are ‘well-correlated’ (on
he Grassmannian, the set of linear subspaces) between the source and target PCA subspaces whilst balancing variance preservation
f each dataset. In this case study, a dimension of ten is used.3

Once the PCA subspaces are identified, the normal condition data are removed from the feature space i.e. 𝑋𝑗
𝑠 = {𝑥𝑗𝑠,𝑖 ∶ 𝑦𝑠,𝑖 ∈

𝑗
𝑠} ∈ R500×10 and 𝑋𝑗

𝑡 = {𝑥𝑗𝑡,𝑖 ∶ 𝑦𝑡,𝑖 ∈ 𝐺𝑗
𝑡 } ∈ R500×10 and label space 𝒚𝑗𝑠 = {𝑦𝑠,𝑖 ∶ 𝑦𝑠,𝑖 ∈ 𝐺𝑗

𝑠} ∈ R500 and 𝒚𝑗𝑡 = {𝑦𝑡,𝑖 ∶ 𝑦𝑡,𝑖 ∈ 𝐺𝑗
𝑡 } ∈ R500. The

normal condition is crucial in learning the PCA embeddings as it anchors the mappings to the feature-aligned space. However, the
normal condition is not needed at the classification or domain adaptation stage, as novelty detectors have been shown to adequately
perform damage detection in isolation [40,41] and the PBSHM task is performing localisation.

Distance metrics over the feature space
Domain adaptation techniques seek to harmonise source and target data spaces; to do this, most algorithms identify a mapping

that minimises the distance between the two datasets. There is therefore a prior assumption that the ‘closer’ the generative data
distributions are for any two datasets, the more similar the datasets are, and the more likely transfer is possible when compared to
datasets which are ‘far’ away from each other. This notion that ‘closer’ datasets are more likely to produce positive transfer can be
used to select the most optimal source and target datasets for a PBSHM problem. A distance metric-based approach is proposed in
order to determine which particular source–target pair of datasets from the maximum common subgraph set (Table 7) should be
used to perform transfer for the aircraft wing population. Specifically, the two metrics, the rank of domain and the maximum mean
discrepancy are discussed.

The rank of domain (ROD) was proposed by Gong et al. specifically for determining which source datasets would produce the
best performance for target datasets without training a domain adaptation technique or classifier [33]. The metric is designed for
scenarios where the feature sets are linear subspaces, as is the case in this paper. Mathematically, the ROD is a weighted symmetrised
KL-divergence, where the weights are the principal angles between the source and target. As a result, the ROD assesses the statistical
distance between the source and target, whilst also considering the geometric alignment of the two subspaces. The symmetrised
KL-divergence used in the ROD assumes that each dimension of the feature space for both the source and target subspaces can be
approximated with one-dimensional Gaussian distributions. This assumption is reasonable, given that the two subspaces are linear
subspaces identified using PCA. Formally, the ROD is defined as,

𝐷𝑅𝑂𝐷( ,  ) = 1
𝑑

𝑑
∑

𝑖
𝜃𝑖
(

𝐾𝐿(𝑖||𝑖) +𝐾𝐿(𝑖||𝑖)
)

(2)

where 𝑖 and 𝑖 are both one-dimensional Gaussian distribution approximations of the data distributions projected onto the subspace
(as mentioned above), 𝜃𝑖 is the 𝑖th principal angle between the subspaces, and 𝑑 is the dimension of the subspaces (e.g. in this paper
𝑑 = 10). For further mathematical details, see Appendix C.

The second metric utilised in this section is the maximum mean discrepancy — a metric typically used as part of the cost function
in many domain adaptation algorithms [28,32,51,52]. The MMD is a popular choice of distance metric, as it is a non-parametric
distance, meaning that the distribution forms do not need to be known (or approximated). The MMD quantifies the difference

3 A dimension of ten was selected as it was the maximum dimension from performing the SDM analysis for all 15120 combinations of source–target datasets
with dimensions varying from two to ten). By selecting a dimension of ten, all candidate feature sets contain all their ‘well-aligned’ components and objective
istance metric comparisons can be performed between all the potential feature sets. In addition, a study was performed investigating the sensitivity of the
12

BSHM methodology to the number of PCA dimensions, where dimensions around ten all produced similar outcomes.
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Table 8
Distance metrics for the four sets of candidate feature spaces from the maximum common subgraphs.
Lowest metrics are highlighted in bold.

Subgraph set (a) (b) (c) (d)

ROD 0.62 3.16 1.07 1.51
Marginal MMD 0.13 0.08 0.12 0.10
Joint MMD 3.02 4.41 6.37 4.18

Table 9
F1 scores for the four sets of candidate feature spaces from the maximum common subgraphs. Highest
F1 scores are highlighted in bold.

Subgraph set (a) (b) (c) (d)

F1
Source Train 1.0 1.0 1.0 1.0

Test 1.0 1.0 1.0 1.0

Target Train 1.0 0.4 0.2 0.6
Test 1.0 0.4 0.2 0.6

between the mean embeddings for two datasets (using a universal reproducing kernel Hilbert space), meaning that it is a metric on
distributions [51]. A Gaussian kernel is utilised in this paper (as it is characteristic on R𝑑), 𝑘(𝒙,𝒙′) = exp(− ‖

‖

𝑥 − 𝑥′‖
‖

2 ∕2𝑙2), where 𝑙
s the scale parameter which is determined here using the median heuristic [51]. The MMD can be formulated to assess the distance
etween the marginal distributions (i.e. 𝑃 (𝑋𝑠) and 𝑃 (𝑋𝑡)), or the joint distributions (i.e. 𝑃 (𝒚𝑠, 𝑋𝑠) and 𝑃 (𝒚𝑡, 𝑋𝑡))4. These two forms
f the distance are useful, as the marginal MMD can be considered an unsupervised metric, whereas the joint MMD more accurately
ssesses the differences between the two feature spaces, but requires labels. The squared MMD distances5 (both marginal and joint),

can be defined as,

𝐷2
𝑀𝑀𝐷(𝑠,𝑡) = tr

(

𝐾
𝐶
∑

𝑐=0
𝑀𝑐

)

(3)

here 𝑘(𝑋,𝑋′) = 𝐾 ∈ R(𝑁𝑠+𝑁𝑡)×(𝑁𝑠+𝑁𝑡), which is the kernel matrix, given that 𝑋 = 𝑋𝑠 ∪ 𝑋𝑡 ∈ R(𝑁𝑠+𝑁𝑡)×𝑑 , and 𝑀𝑐 defines the
empirical mean such that,

(𝑀𝑐 )𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝑁 (𝑐)

𝑠 𝑁 (𝑐)
𝑠
, 𝑥𝑖, 𝑥𝑗 ∈ (𝑐)

𝑠

1
𝑁 (𝑐)

𝑡 𝑁 (𝑐)
𝑡
, 𝑥𝑖, 𝑥𝑗 ∈ (𝑐)

𝑡

−1
𝑁 (𝑐)

𝑠 𝑁 (𝑐)
𝑡
,

{

𝑥𝑖 ∈ (𝑐)
𝑠 , 𝑥𝑗 ∈ (𝑐)

𝑡

𝑥𝑗 ∈ (𝑐)
𝑠 , 𝑥𝑖 ∈ (𝑐)

𝑡

0, otherwise

(4)

here, when 𝐶 = 0 the MMD assesses the distance between the marginal distributions6, and when 𝑐 = {0, 1… , 𝐶} the MMD
approximates the distance between the joint distribution (where 𝐶 is the total number of classes). The notation (𝑀𝑐 )𝑖,𝑗 denotes the
𝑖th row and 𝑗th column of the matrix 𝑀𝑐 . Furthermore, (𝑐)

𝑠 = {𝒙𝑖 ∶ 𝒙𝑖 ∈ 𝑠 ∧ 𝑦(𝒙𝑖) = 𝑐} denotes the source instances that belong in
class 𝑐 and (𝑐)

𝑡 = {𝒙𝑖 ∶ 𝒙𝑖 ∈ 𝑡 ∧ 𝑦(𝒙𝑖) = 𝑐} are the target instances that belong in class 𝑐, where 𝑁 (𝑐)
𝑠 = |(𝑐)

𝑠 | and 𝑁 (𝑐)
𝑡 = |(𝑐)

𝑡 |.
The ROD, marginal and joint MMD distances were quantified, as shown in Table 8, for the four (pre-processed) sets of candidate

eature spaces, each of which are associated with a maximum common subgraph in Table 7. The values from the two unsupervised
etrics, the ROD and marginal MMD, show conflicting results, with the rank order of the subgraph sets reversed for the two metrics.
he ROD, which takes into account the alignment of the subspaces as well as the statistical distance, shows the smallest distance
or set (a) and largest for set (b), whereas the marginal MMD distance is smallest for set (b) and largest for set (a). However, the
MD distances for all four sets are more similar than the ROD values, which indicates that set (a) is ‘closer’ than (b), (c) and (d).
onsulting the (supervised) joint MMD metric, which requires knowledge of the source and target labels (something not possible in
ractice), set (a) comes out as the most ‘similar’, producing the smallest distance, and (b) the most dissimilar. Given this analysis, set
a) is selected as the feature spaces for performing transfer learning, having performed best on two out of the three metrics, (i.e. of
he two metrics that really separate the options, both clearly choose (a)) with the expectation that these datasets are most likely to
ead to positive transfer (out of the set of four candidates). Exploration of the link between data-space distances and transferability
s discussed further in Section 3.3.2.

4 The distance between the joint distribution is approximated by considering the distance between the marginal (i.e. 𝑃 (𝑋𝑠) and 𝑃 (𝑋𝑡)) and class-conditional
istributions (i.e. 𝑃 (𝑋𝑠 | 𝒚𝑠) and 𝑃 (𝑋𝑡 | 𝒚𝑡)), removing the need for a model.

5 Throughout the paper any squared MMD distance is referred to as an MMD distance.
6 Here 𝑐 = 0 is used to refer to the complete dataset, i.e. (0)

𝑠 = {𝒙𝑖 ∶ 𝒙𝑖 ∈ 𝑠}, (0)
𝑡 = {𝒙𝑖 ∶ 𝒙𝑖 ∈ 𝑡}, 𝑁 (0)

𝑠 = 𝑁𝑠 and 𝑁 (0)
𝑡 = 𝑁𝑡; this should not be confused
13

ith the use of ‘0’ as the normal condition label earlier in the manuscript.



Mechanical Systems and Signal Processing 172 (2022) 108918P. Gardner et al.
Fig. 8. A visualisation of the BDA latent space for candidate set (a), where ∙ denotes the source and ○ denotes the target datasets.

3.2.3. Transferring localisation labels
Domain adaptation algorithms allow label information from source datasets to be utilised in classifying (unlabelled) target

datasets. Once a pair of candidate source and target datasets have been selected (via structural and data similarity measures),
domain adaptation is performed, identifying a latent space where the source and target datasets are harmonised. In this latent space
a classifier is trained on the source dataset and used to diagnose the target dataset.

Multiple domain adaptation algorithms exist in the literature [29–31], each of which has particular assumptions and strengths
for specific transfer learning problems. In this paper, balanced distribution adaptation (BDA) [34] is utilised as the algorithm7

for performing transfer, with details stated in Appendix D. BDA was applied with a Gaussian kernel (where 𝑙 was chosen using the
median heuristic), five iterations, 𝑘 = 2 transfer components, regularisation parameter 𝜇 = 0.1, and the balance factor 𝜆 = 1; meaning
the datasets are similar and matching the conditional distribution is most important [34], something that can be assumed given the
preprocessing (that mostly aligns the marginal distributions) and graph-matching steps. The BDA mappings were inferred using
the source (labelled) and target (unlabelled) training datasets with generalisation of the mapping validated on the testing datasets.
Finally, a k-nearest neighbour (kNN) classifier is used to transfer knowledge from the source to the target in the latent space. A
kNN is chosen, as BDA seeks to minimise the distance between these source and target datasets, therefore making them ‘close’ in
Euclidean space. A kNN was trained on the latent space for the labelled source training data, where the number of neighbours was
selected using cross-validation. This classifier was applied to the source testing and target training and testing datasets.

A visualisation of the BDA mapping identified for feature set (a) is shown in Fig. 8 (where the source labels are renumbered to
match their corresponding target label). It can be seen that all five classes have been harmonised correctly, and hence lie on top of
each other in the latent space. In this latent space the kNN classifier trained on the source training dataset generalises to the target
datasets with 100% classification accuracy. The PBSHM methodology shows an increase on the performance of the two multi-class
SVM classifiers in [42], where a classification performance of the single-site damage states was 98.29% for Classifier 1 (trained
using a range of single- and multi-site damage states) and 98.34% using Classifier 2 (trained using only the five single-site damage
states).

It is interesting to note that the pre-processing and domain adaptation steps have reduced the feature space dimensionality from
5120 to just two. The latent space for set (b) is shown in Fig. 9 for comparison, showing that negative transfer has occurred and the
incorrect sets of classes have been aligned. A comparison of performance for the kNN classifiers trained on the BDA latent spaces
for the four candidate feature sets is shown in Table 9. These results show that the PBSHM methodology has successfully allowed
the Gnat labelled dataset to localise damage on the Piper Tomahawk wing using candidate set (a) — the set chosen by both physical
intuition and by distance metrics. Analysis is shown in Section 3.3 that verifies the methodology, showing comparison to all 15120
combinations of source–target pairs.

3.3. Verification of the methodology

The PBSHM approach outlined in Section 3.2 has been demonstrated as successful in diagnosing damage on the Piper Tomahawk
using information from the Gnat dataset. The following section seeks to further verify that the proposed methodology provides an
efficient solution to performing PBSHM in heterogeneous populations. Section 3.3.1 demonstrates the benefits of generating abstract
representations of structures as graphs, with Section 3.3.2 exploring the relationship between distance metrics and transferability.

7 It is noted that the novelty of this paper is in presenting the complete PBSHM methodology (visually outlined in Fig. 5), of which domain adaptation is
one (important) step; BDA could therefore be substituted for any appropriate alternative domain adaptation algorithm.
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Fig. 9. A visualisation of the BDA latent space for candidate set (b), where ∙ denotes the source and ○ denotes the target datasets.

3.3.1. Verification of the abstract representation of structures
The PBSHM task was to transfer localisation labels from the Gnat (source) dataset to the Piper Tomahawk (target) dataset. A

challenge with this problem is that there are over 15120 combinations of localisation label sets that could be transferred from
the Gnat onto the Piper Tomahawk dataset. The PBSHM methodology has shown that by utilising abstract representations of
structures in a graphical domain, the problem can be reduced to four candidate sets. The same pre-processing, domain adaptation
and classification steps were performed for all 15120 combinations. It was found that only 92 combinations lead to classification
performances with an F1 score of 1 on both the target training and testing dataset (around 0.6% of the complete set). A box and
whisker plot of the F1 scores on target testing data is presented in Fig. 10, comparing those feature combinations that were not
MCSs to those that were8. It is interesting to note that the worst possible effect of negative transfer has been removed from the MCS
set (i.e. no MCSs produced an F1 score of 0).

These results show that without some prior knowledge, the PBSHM problem would be challenging to perform in an exhaustive
manner, and even more challenging to select positive transfer scenarios without access to target labels. By generating AGs and
performing graph matching, this problem was simplified, improving the chance of identifying a set that produced positive transfer
to one in four. Before reduction, the probability that the F1 score equalled 1 was 0.006; after, it was 0.25. This demonstrates the
power of utilising knowledge about the structural similarities between members of a population.

The classification results can be further grouped into those feature sets that form no path on the AGs (denoted ‘Random’); those
that have some topological equivalence, being valid paths of five structural nodes on the AGs (denoted ‘Cat. 1’); those with some
structural equivalence, being valid paths of five structural nodes and one boundary condition node on the AGs (denoted ‘Cat. 2’);
and MCSs. The chance of identifying a feature set in a particular group that produced a classifier with 100% accuracy on the target
dataset were: Random: 0.6%, Cat. 1: 0%, Cat. 2: 3.4%, and MCS: 25%. Box and whisker plots for these four groupings are presented
in Fig. 11 showing F1 scores on the target testing data. It is noted that the performance of the set defined by Cat. 1 is much worse
than the Random set (see Fig. 11), demonstrating the importance of boundary conditions in defining structural similarity. In fact,
the set defined by Cat. 2 has a mean and interquartile range that are worse than the Random set and Cat. 1; however, there is a
higher probability of finding a combination that produced an F1 score of 1 within Cat. 2 than Cat 1. or the Random set. The results
from these groupings demonstrate that, given the AG representations, subgraphs that were connected and induced (i.e. MCSs) were
much more likely to produce positive transfer than other valid subgraphs, verifying the assumption that these criteria better reflect
structural similarities.

3.3.2. Feature space distances and classification performance
One of the key challenges when performing transfer learning is determining the risk of negative transfer. It is difficult to quantify

the risk of negative transfer, as it is affected by many different factors, such as whether two datasets have some causal mechanism
that is linked between them, or whether the nonlinear mapping and the assumptions in the domain adaptation algorithm are valid.
One factor investigated in this paper is whether transferability can be determined by assessing the distance between source and
target feature spaces, an idea that has been utilised in the transfer learning literature [33].

The ROD, marginal MMD and joint MMD distances were assessed for all 15120 (pre-processed) feature sets and compared to the
target testing F1 scores, presented in Figs. 12, 13 and 14. It can be seen that the two unsupervised metrics, the ROD and marginal
MMD, both show almost no correlation to F1 score. The reason for the lack of correlation is that the ROD and marginal MMD only

8 The same trends were seen for the target training dataset as well.
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Fig. 10. Box and whisker plots of testing F1 scores from kNN classifiers trained on BDA latent spaces. ‘All’ denotes feature set combinations that are not MCSs.

Fig. 11. Box and whisker plots of testing F1 scores from kNN classifiers trained on BDA latent spaces. ‘Random’ denotes feature set combinations that are
not valid paths in the AGs, ‘Cat. 1’ are combinations that are valid paths in the AGs and ‘Cat. 2’ combinations that are valid paths and include the boundary
condition nodes in the AGs.

Fig. 12. Rank of domain (ROD) against F1 score on the target testing dataset. ‘All’ denotes feature set combinations that are not MCSs and (a), (b), (c) and (d)
denote the MCS set.

depend on the unlabelled feature space, meaning that these distances are the same for any permutations of the labels for a given
set of features in the 𝑛-choose-𝑘 problem (effectively there are 126 different ROD and marginal MMD distances from the 𝑛-choose-𝑘
problem). Given that the ordering of how the labels are paired between the Gnat and Piper Tomahawk data matters, both these
metrics fail to fully capture the notion of distance between the datasets, and hence there is a large amount of scatter for a given ROD
and marginal MMD distance. The joint MMD does incorporate knowledge of the labels, and hence is different for all 15120 feature
set combinations. This metric shows a clear negative correlation (the Pearson correlation coefficient is −0.69), although there is
large scatter of joint MMD distances that produce the same F1 scores. Comparisons of marginal and joint MMD and ROD and joint
MMD are presented in Figs. 15 and 16. These figures show that generally the lowest joint MMD values for a given marginal MMD or
ROD distance lead to the best F1 scores. Knowledge of the difference in joint distribution between datasets therefore provides more
information about transferability. These results show the challenge of determining the risk of negative transfer from a data-based
viewpoint a priori, and demonstrates why the process of forming AGs and identifying MCSs is so important in a PBSHM context.
Further research will investigate whether there is an unsupervised metric that has a clear link to transferability.
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Fig. 13. Marginal maximum mean discrepancy (MMD) against F1 score on the target testing dataset. ‘All’ denotes feature set combinations that are not MCSs
and (a), (b), (c) and (d) denote the MCS set.

Fig. 14. Joint maximum mean discrepancy (MMD) against F1 score on the target testing dataset. ‘All’ denotes feature set combinations that are not MCSs and
(a), (b), (c) and (d) denote the MCS set.

Fig. 15. Marginal maximum mean discrepancy (MMD) against Joint MMD, coloured by the F1 score on the target testing dataset. The coloured (∙) denote the
MCSs with blue for set (a), green for (b), purple for (c) and orange for (d).

Fig. 16. Rank of domain (ROD) against Joint MMD, coloured by the F1 score on the target testing dataset. The coloured (∙) denote the MCSs with blue for set
(a), green for (b), purple for (c) and orange for (d).
17
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4. Conclusions

Population-based structural health monitoring seeks to improve SHM inferences by overcoming issues associated with a lack of
abelled damage observations by expanding the available dataset to a population of structures. PBSHM becomes more difficult
s structures in a population become increasingly different (groups called heterogeneous populations). The challenge arises as
opulations include structures that are increasingly dissimilar, with data spaces that are further apart and less aligned. This
aper seeks to demonstrate that it is possible to perform PBSHM for heterogeneous populations, demonstrating a novel PBSHM
ethodology for a population of two real-world structures, a Gnat aircraft wing and a Piper Tomahawk aircraft wing. Specifically,

his paper demonstrates that localisation labels can be transferred from the Gnat wing dataset onto the Piper Tomahawk dataset,
eaning localisation can be performed on the Piper Tomahawk wing without the need for damage observations. It should be noted

hat this problem is a severe stress test for PBSHM. Ideally, sensor systems on multiple structures would be aligned in ways that
romote transfer. In the situation here, the sensor sets were chosen for the individual problem only, demonstrating the power of
etrofitting a PBSHM approach to existing SHM datasets.

The proposed PBSHM methodology utilises abstract representations of structures in a graphical domain via the use of irreducible
lement models and attributed graphs. This process of converting structures into attributed graphs allows for objective comparisons
f structural similarities, as metrics can be defined over the space of structures. In addition, maximum common subgraphs can be
xtracted across a population of structures, locating sets of structural elements that exist in any two members of a population. This
rocess was applied to the heterogeneous population of aircraft wings, where the AGs were utilised to reduce the potential candidate
eature spaces for transfer learning down from 15120 to just four, by identifying four maximum common subgraphs. This use of
Gs as a method for encoding structural similarities was shown to be extremely effective with one of the four MCSs leading to F1
cores of 1. The process of utilising an abstract representation of structures in a graphical domain meant that the chance of selecting
set of candidate features that lead to 100% classification accuracy increased from around 0.6% to 25%.

The second main stage of the PBSHM methodology sought to perform pre-transfer alignment via pre-processing before assessing
he distances between the source–target dataset pairs. Three distance metrics were used to assess the distance between the source–
arget pairs, namely the rank of domain, marginal maximum mean discrepancy and the joint maximum mean discrepancy. It was
ound that one of the MCS feature sets led to the smallest distance in two out of the three metrics and was selected as the most
ikely to perform positive transfer. However, analysis of the relationship between these distance metrics and transferability was not
lear, with this being an area for further research. In particular, the two metrics that were unsupervised (i.e. did not require labels)
howed no clear correlation to the target F1 score for all 15120 potential source–target feature sets. This is because transferability
epends on the joint distribution of the dataset, with every class cluster needing to be ‘close’ for transfer to work. This was reflected
n the joint MMD that provided a clearer correlation with testing F1 score, as opposed to the marginal MMD and ROD, but required
nowledge of the source and target labels.

The final step in the PBSHM methodology was to perform domain adaptation for set (a) from the MCSs group. This lead to 100%
lassification accuracy on the target dataset, showing that localisation labels can be transferred from the Gnat wing to the Piper
omahawk wing.
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ppendix A. Irreducible element models

.1. Gnat aircraft wing irreducible element model

The two tables below define the complete IE model for the Gnat aircraft wing, where Table A.10 states the structural elements
nd Table A.11 the relationships between those elements.
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Table A.10
List of elements and their properties for the Gnat aircraft wing.
Gnat aircraft wing

Element name Description Material type Geometry type Contextual type

1 Wing Panel Metal → Aluminium Plate → Other Aerofoil
2 Wing Panel Metal → Aluminium Plate → Other Aerofoil
3 Wing Panel Metal → Aluminium Plate → Other Aerofoil
4 Wing Panel Metal → Aluminium Plate → Other Aerofoil
5 Wing Panel Metal → Aluminium Plate → Other Aerofoil
6 Wing Panel Metal → Aluminium Plate → Other Aerofoil
7 Wing Panel Metal → Aluminium Plate → Other Aerofoil
8 Wing Panel Metal → Aluminium Plate → Other Aerofoil
9 Wing Panel Metal → Aluminium Plate → Other Aerofoil

Element name Description Boundary – –

A Fuselage Ground – –

Table A.11
List of relationships and their properties for the Gnat aircraft wing.
Gnat aircraft wing

Relationship name Element set Type

A {1, 2} Perfect
B {2, 3} Perfect
C {3, 4} Perfect
D {1, 6} Perfect
E {2, 6} Perfect
F {3, 6} Perfect
G {4, 5} Perfect
H {5, 6} Perfect
I {5, 9} Perfect
J {6, 9} Perfect
K {9, 8} Perfect
L {8, 7} Perfect
M {1, A} Boundary
N {2, A} Boundary
O {3, A} Boundary
P {4, A} Boundary

Table A.12
List of elements and their properties for the Piper Tomahawk aircraft wing.
Piper Tomahawk aircraft wing

Element name Description Material type Geometry type Contextual type

1 Wing Panel Metal → Aluminium Plate → Other Aerofoil
2 Wing Panel Metal → Aluminium Plate → Other Aerofoil
3 Wing Panel Metal → Aluminium Plate → Other Aerofoil
4 Wing Panel Metal → Aluminium Plate → Other Aerofoil
5 Wing Panel Metal → Aluminium Plate → Other Aerofoil

Element name Description Boundary – –

A Mount Ground – –

A.2. Piper tomahawk aircraft wing irreducible element model

The two tables below define the complete IE model for the Piper Tomahawk aircraft wing, where Table A.12 states the structural
lements and Table A.13 the relationships between those elements.
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Table A.13
List of relationships and their properties for the Piper Tomahawk aircraft wing.
Piper Tomahawk aircraft wing

Relationship name Element set Type

A {1, 2} Perfect
B {2, 3} Perfect
C {3, 4} Perfect
D {4, 5} Perfect
E {1, A} Boundary

Appendix B. Subspace disagreement measure

The subspace disagreement measure (SDM) was introduced by Gong et al. [33] as an unsupervised method for determining the
ize of subspace (both source and target), that would be optimal for performing knowledge transfer using the geodesic flow kernel
lgorithm [33]. The intuition behind this idea was that the size of subspace should be determined by selecting the maximum number
f dimensions that are ‘well-correlated’ between the source and target subspaces in an unsupervised way. In order to achieve this
dea, the SDM harnesses the fact that PCA subspaces are linear subspaces, and therefore, for a set dimension 𝑑, can be defined on

the Grassmannian [33]. If the source and target PCA subspaces are similar, then these subspaces, and their joint subspace — here
referred to as the source–target subspace (calculated using the combined source and target datasets) — should all be ‘close’ on the
Grassmannian. Mathematically, this is performed by calculating the averaged minimum correlation distance on the Grassmannian
for a given dimension 𝑑,

𝑆𝐷𝑀(𝑑) = 1
2
(

sin 𝛼𝑑 + sin 𝛽𝑑
)

(B.1)

where 𝛼𝑑 and 𝛽𝑑 are the 𝑑th principal angles between the source PCA and source–target PCA subspaces, and target PCA and
source–target PCA subspaces respectively (where sin 𝛼𝑑 and sin 𝛽𝑑 are the respective minimum correlation distances).

Eq. (B.1) is useful as it is bounded on [0 1], meaning that small SDM values indicate that the source and target PCA subspaces
are well-aligned at the 𝑑th dimension with small principal angles, and values of one indicate that the source and target subspaces
are orthogonal with 𝛼𝑑 = 𝛽𝑑 = 𝜋∕2. Gong et al. therefore proposed to use the SDM in a greedy manner in order to identify the
optimal subspace dimension 𝑑,

𝑑 = min (𝑑 | 𝑆𝐷𝑀(𝑑) = 1) (B.2)

where ideally 𝑑 is not so high that the subspaces have orthogonal directions, but high enough that the dimensions preserve the
variances in the datasets.

Appendix C. Rank of domain

The rank of domain (ROD) seeks to calculate the weighted symmetrised KL-divergences between two datasets, a source dataset9

𝑋𝑠 ∈ R𝑁𝑠×𝐷 and a target dataset 𝑋𝑡 ∈ R𝑁𝑡×𝐷, projected onto 𝑑-dimensional linear subspaces. If 𝑃𝑠 and 𝑃𝑡 are the basis of the two
PCA subspaces then the principal angles and vectors can be calculated via singular value decomposition,

𝑃𝑠
𝖳𝑃𝑡 = 𝑈𝛤𝑉 𝖳 (C.1)

where,

𝜃𝑖 = arccos 𝛾𝑖, 𝒔𝑖 = (𝑃𝑠𝑈 )⋅,𝑖, 𝒕𝑖 = (𝑃𝑡𝑉 )⋅,𝑖 (C.2)

where 𝜸 = diag(𝛤 ) and the notation (𝐴)⋅,𝑖 returns the 𝑖th column of the matrix 𝐴. The data distributions are projected using the
principal vectors via 𝑋𝑠

𝖳𝒔𝑖 and 𝑋𝑡
𝖳𝒕𝑖. Once projected, the distributions are approximated as one-dimensional Gaussian distributions,

an assumption that holds if PCA has identified fully independent components. Given that 𝑋𝑠 and 𝑋𝑡 have been centred, they will
both have zero means, meaning that only the variances are required for the KL-divergences, defined as,

𝜎2𝑖,𝑠 =
1
𝑁𝑠

𝒔𝑖𝖳𝑋𝑠
𝖳𝑋𝑠𝒔𝑖, 𝜎2𝑖,𝑡 =

1
𝑁𝑡

𝒕𝑖𝖳𝑋𝑡
𝖳𝑋𝑡𝒕𝑖 (C.3)

o that with the Gaussian assumption, the ROD can be calculated in closed-form as,

𝑅𝑂𝐷(𝑆, 𝑇 ) = 1
𝑑

𝑑
∑

𝑖
𝜃𝑖

(

1
2

𝜎2𝑖,𝑠
𝜎2𝑖,𝑡

+ 1
2

𝜎2𝑖,𝑡
𝜎2𝑖,𝑠

− 1

)

. (C.4)

9 In order to avoid notational clutter, the notation used in this appendix differs from the rest of the manuscript.
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Appendix D. Balanced distribution adaptation

Balance distribution adaptation (BDA), proposed by Wang et al. [34], performs domain adaptation via an MMD-based cost
unction that seeks to ‘balance’ the effect of minimising the MMD between the marginal (i.e. 𝑃 (𝑋)) and class conditional distributions
i.e. 𝑃 (𝑋| 𝑦)) of a source and target dataset. In addition, weightings are used to reduce the effect of class imbalance when minimising
he distance between the class-conditional distributions. This distance is formed as,

𝐷(𝑠,𝑡) ≈ (1 − 𝜆)𝐷(𝑃 (𝑋𝑠), 𝑃 (𝑋𝑡)) + 𝜆𝐷
(

𝛼𝑠𝑃 (𝑋𝑠 | 𝒚𝑠), 𝛼𝑡𝑃 (𝑋𝑡 | 𝒚𝑡)
)

(D.1)

where 𝜆 ∈ [0, 1] is a balance factor, where 𝜆 → 1 assumes the datasets are more similar and the conditional distributions are more
mportant to adapt [34]. Approximations of 𝛼𝑠 = 𝑃 (𝒚𝑠)∕𝑃 (𝑋𝑠) and 𝛼𝑡 = 𝑃 (𝒚𝑡)∕𝑃 (𝑋𝑡) are formed using the class prior of both datasets,
eading to a weight matrix for each class 𝑊𝑐 ,

(𝑊𝑐 )𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑃
(

𝒚(𝑐)𝑠

)

𝑁 (𝑐)
𝑠 𝑁 (𝑐)

𝑠
, 𝑥𝑖, 𝑥𝑗 ∈ (𝑐)

𝑠

𝑃
(

𝒚(𝑐)𝑡

)

𝑁 (𝑐)
𝑡 𝑁 (𝑐)

𝑡
, 𝑥𝑖, 𝑥𝑗 ∈ (𝑐)

𝑡

−
√

𝑃
(

𝒚(𝑐)𝑠

)

𝑃
(

𝒚(𝑐)𝑡

)

𝑁 (𝑐)
𝑠 𝑁 (𝑐)

𝑡
,

{

𝑥𝑖 ∈ (𝑐)
𝑠 , 𝑥𝑗 ∈ (𝑐)

𝑡

𝑥𝑗 ∈ (𝑐)
𝑠 , 𝑥𝑖 ∈ (𝑐)

𝑡

0, otherwise

(D.2)

where 𝑃
(

𝒚(𝑐)𝑠

)

and 𝑃
(

𝒚(𝑐)𝑡

)

are the class priors on class 𝑐. The MMD-based cost function is constructed by separating out the
arginal MMD distance (when 𝑐 = 0 in Eqs. (3) and (4)), and the conditional MMD distance (with 𝑀𝑐 for 𝑐 = {1,… , 𝐶} replaced

with the weightings in Eq. (D.2)). By utilising the low-rank empirical kernel embedding 𝐾̃ = 𝐾𝐴𝐴𝖳𝐾 [53] and regularisation
constraints (a Frobenius-norm on the mapping weight 𝐴 and subject to kernel PCA) the optimisation problem becomes,

min
𝐴𝖳𝐾𝐻𝐾𝐴=I

= tr
(

𝐴𝖳𝐾

(

(1 − 𝜆)𝑀0 + 𝜆
𝐶
∑

𝑐=1
𝑊𝑐

)

𝐾𝐴

)

+ 𝜇tr
(

𝐴𝖳𝐴
)

(D.3)

where 𝐴 ∈ R(𝑁𝑠+𝑁𝑡)×𝑘 are the mapping weights that map onto a 𝑘-dimensional latent space 𝑍 = 𝐾𝐴 ∈ R(𝑁𝑠+𝑁𝑡)×𝑘. From the
regularisation constraints, 𝜇 controls the complexity of the mapping, 𝐻 = I − 1∕(𝑁𝑠 + 𝑁𝑡)𝟏 is a centring matrix, I is an identify
matrix and 𝟏 a matrix of ones. By using a Lagrange multiplier approach, the optimisation problem can be solved as a generalised
eigendecomposition,

(

𝐾

(

(1 − 𝜆)𝑀0 + 𝜆
𝐶
∑

𝑐=1
𝑊𝑐

)

𝐾 + 𝜇I

)

𝐴 = 𝐾𝐻𝐾𝐴𝛷. (D.4)

where 𝛷 are the Lagrange multipliers, and 𝐴 the optimal mapping weights. It is noted that BDA seeks to perform domain adaptation
on an unlabelled target dataset. This restriction means that in order to approximate the target conditional distribution the algorithm
utilises pseudo-labels, i.e. (𝑐)

𝑡 = {𝒙𝑖 ∶ 𝒙𝑖 ∈ 𝑡 ∧ 𝑦̂(𝒙𝑖) = 𝑐} are the instances that belong in class 𝑐 given the pseudo-target label 𝑦̂(𝒙𝑖).
he pseudo-labels are initialised using a classifier trained on the source dataset and applied to the target dataset, and are updated

teratively by a classifier trained on the source data in the latent space 𝑍𝑠 which is applied to the target data in the latent space
𝑍𝑡 [34].
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