
On Novel Approaches to Model-Based Structural
Health Monitoring

A Thesis submitted to the University of Sheffield

for the degree of Doctor of Philosophy in the Faculty of Engineering

by

P. A. Gardner

Department of Mechanical Engineering

University of Sheffield

September 2018





Abstract

Structural health monitoring (SHM) strategies have classically fallen into two main

categories of approach: model-driven and data-driven methods. The former utilises

physics-based models and inverse techniques as a method for inferring the health

state of a structure from changes to updated parameters; hence defined as inverse

model-driven approaches. The other frames SHM within a statistical pattern recog-

nition paradigm. These methods require no physical modelling, instead inferring

relationships between data and health states directly. Although successes with both

approaches have been made, they both suffer from significant drawbacks, namely

parameter estimation and interpretation difficulties within the inverse model-driven

framework, and a lack of available full-system damage state data for data-driven

techniques. Consequently, this thesis seeks to outline and develop a framework for an

alternative category of approach; forward model-driven SHM. This class of strategies

utilise calibrated physics-based models, in a forward manner, to generate health

state data (i.e. the undamaged condition and damage states of interest) for training

machine learning or pattern recognition technologies. As a result the framework

seeks to provide potential solutions to these issues by removing the need for making

health decisions from updated parameters and providing a mechanism for obtaining

health state data.

In light of this objective, a framework for forward model-driven SHM is established,

highlighting key challenges and technologies that are required for realising this

category of approach. The framework is constructed from two main components:

generating physics-based models that accurately predict outputs under various

damage scenarios, and machine learning methods used to infer decision bounds. This

thesis deals with the former, developing technologies and strategies for producing
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statistically representative predictions from physics-based models. Specifically this

work seeks to define validation within this context and propose a validation strategy,

develop technologies that infer uncertainties from various sources, including model

discrepancy, and offer a solution to the issue of validating full-system predictions

when data is not available at this level.

The first section defines validation within a forward model-driven context, offering a

strategy of hypothesis testing, statistical distance metrics, visualisation tools, such

as the witness function, and deterministic metrics. The statistical distances field

is shown to provide a wealth of potential validation metrics that consider whole

probability distributions. Additionally, existing validation metrics can be categorised

within this fields terminology, providing greater insight.

In the second part of this study emulator technologies, specifically Gaussian Process

(GP) methods, are discussed. Practical implementation considerations are examined,

including the establishment of validation and diagnostic techniques. Various GP

extensions are outlined, with particular focus on technologies for dealing with large

data sets and their applicability as emulators. Utilising these technologies two tech-

niques for calibrating models, whilst accounting for and inferring model discrepancies,

are demonstrated: Bayesian Calibration and Bias Correction (BCBC) and Bayesian

History Matching (BHM). Both methods were applied to representative building

structures in order to demonstrate their effectiveness within a forward model-driven

SHM strategy. Sequential design heuristics were developed for BHM along with an

importance sampling based technique for inferring the functional model discrepancy

uncertainties.

The third body of work proposes a multi-level uncertainty integration strategy by

developing a subfunction discrepancy approach. This technique seeks to construct a

methodology for producing valid full-system predictions through a combination of

validated sub-system models where uncertainties and model discrepancy have been

quantified. This procedure is demonstrated on a numerical shear structure where it

is shown to be effective.

Finally, conclusions about the aforementioned technologies are provided. In addition,

a review of the future directions for forward model-driven SHM are outlined with

the hope that this category receives wider investigation within the SHM community.
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Chapter 1

Introduction

Although successes have been made in the field of Structural Health Monitoring

(SHM) several key challenges still remain. These mainly revolve around the lack of

available damage state data at a full-system level as well as problems in inferring and

interpreting updated model parameters. For these reasons this thesis seeks to develop

novel approaches to model-based SHM offering a strategy for performing forward

model-driven SHM. In order to realise this goal key technologies and methodologies

are developed.

1.1 Structural Health Monitoring: Objectives, Ben-

efits and Challenges

SHM defines the implementation of an online process whereby data from a structure

is acquired and interpreted in order to assess the health state of the structure.

SHM technologies seek to provide early indications of damage occurrences in order

to aid and inform asset management decisions with the broad aim of eliminating

in-service failures and unscheduled maintenance. In the context of SHM damage is

broadly defined as a change that adversely affects the structure’s performance [1].

These SHM tools aim to allow operators to move towards a predictive maintenance

strategy providing a variety of potential benefits. An SHM process provides economic

benefits by reducing system failure, increasing maintenance efficiency, and providing

monitoring data for cost-effective data-driven design. Implementing an SHM strategy
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2 1.1. SHM: OBJECTIVES, BENEFITS AND CHALLENGES

also improves safety whilst offering a methodology for extending the design life of

a structure. These objectives and benefits of SHM are widely applicable across a

variety of industries, for example, manufacturing, power generation, aerospace and

civil infrastructure.

The particular tasks an SHM technology is required to performed can be divided

into a hierarchy of levels as defined by Rytter [2]:

1. Detection: information about the presence of damage

2. Location: information about the position of the damage

3. Classification: information about the type of damage

4. Assessment : information about the extent of the damage

5. Prognosis : information about the residual life and safety of the structure

Progression to the next level in the hierarchy requires successful completion of the

previous levels, where a greater level of desired detail results in an increased difficulty.

It is well-established that prognosis is distinguished from the other levels, as it can

only be achieved with an understanding of the damage physics [3]. Accordingly, a

key decision in the implementation of an SHM strategy is that of identifying the

level of identification required.

In the author’s opinion there are generally three main challenges in developing robust

SHM technologies. Firstly, damage cannot be directly measured [4]. This means that

other quantities are collected with the expectation that they contain information

about the health state of the structure. This information is extracted through a

feature selection process in order to identify damage sensitive features, however this

is currently a very bespoke procedure. Secondly, confounding influences, such as

environmental conditions, changes in boundary conditions and/or loading obscure

patterns in the data that are associated with damage. These must therefore be

removed before health decision strategies are implemented. Thirdly, currently most

SHM techniques require damage state data from all damage scenarios of interest,

often in a range of operational conditions. Usually it is not feasible to obtain these

data either because it is not economically viable, practical or would pose safety

concerns. This thesis aims to provide a potential framework for resolving the lack of

available data problem, but the strategy could also provide methods for solving the

other two challenges.
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1.2 Approaches to Structural Health Monitoring

Throughout SHM literature methods are divided into two categories of approach:

model-driven and data-driven [4–7]. Model-driven (also known as physics-based)

methods use law-based models in combination with inverse techniques in order

to infer or ‘update’ a set of parameters [8, 9] — commonly referred to as model

updating. Health decisions are then made through interpreting these updated

parameter values, leading to the category of methods being herein defined as inverse

model-driven. In contrast, data-driven methods seek to ‘learn’ relationships between

measured response data and structural damage states based on pattern recognition

or machine learning-based models; all without the construction of a physics-based

model [1, 4, 5, 10]. Decisions about the health state of a structure are subsequently

made via classifications (or more generally predictions) of in-service data through

the inferred statistical model.

Further to these two well-established divisions, a third category of approach exists.

This class is distinct from the previous two, as it combines physics-based models,

utilised in a forward manner, and statistical pattern recognition methodologies [11];

herein defined as forward model-driven approaches. This thesis seeks to outline an

overarching framework for forward model-driven approaches, comment on how this

class provides potential solutions to issues with the existing two categories, develop

technologies within the framework and finally to summarise areas of further research

for realising forward model-driven SHM.

1.2.1 Inverse Model-Driven Approaches

Inverse model-driven techniques often involve the construction of a high-fidelity

model of the structure, for which health decisions are to be made, typically in the

form of a Finite Element Analysis (FEA) model. The procedure for making health

decisions often follows a two step process. Initially, the model is calibrated so that it

more accurately represents the structure in question. This is generally performed

by model updating, based on in-service data of the undamaged condition. The

second stage involves obtaining in-service monitoring data, for which the health state

is unknown. The model is then updated again based on this in-service data and

changes in the inferred model parameters from the baseline calibration are used to
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perform damage identification at levels 1-4 of Rytters hierarchy. Prognosis may also

be achievable because an updated physics-based model is generated through the

inverse model-driven procedure [3].

SHM via an inverse model-driven approach therefore relies on model updating

processes. Model updating refers to techniques where certain model parameters are

adjusted such that the residual between observational data and model predictions is

minimised [12]. This task is broadly attempted in two general approaches: direct

methods, where structural matrices are updated to reproduce measured data, and

sensitivity methods, where error between predictions and observations are minimised

via changing a set of defined parameters [12, 13]. Commonly in SHM sensitivity

based techniques are selected over direct approaches. This is because attempting

to update full structural matrices within a direct approach often leads to a lack of

control over the updated matrix values, leading to inferred parameters with little

physical meaning.

Initial development of model updating methodologies approached the problem from

a deterministic view, e.g. the well-established iterative sensitivity based method

[14]. Such techniques approached the problem of model updating using optimisation

technologies, whereby a cost function is developed, typically in a least squares

formulation, and parameter steps made via sensitivity matrices [14, 15]. However,

these approaches require regularisation due to the problem of model updating being

ill-posed [9]. These deterministic methods also have difficulties in handling variability

and uncertainties that are present, e.g. from environmental conditions, parametric

variability and model form uncertainties. For these reasons alternative frameworks

for approaching model updating have been developed.

Two popular philosophical approaches for handling uncertainties within model up-

dating are fuzzy and Bayesian methods [16]. Fuzzy techniques are non-probabilistic

approaches that transform uncertainties into fuzzy inputs, i.e. as a fuzzy number

— a quantity that is characterised by a membership function — and then perform

multiple optimisation problems [17]. Fuzzy model updating technologies assume that

the fuzzy input variables are independent and equally likely, which will result in the

worst case range of parameters being inferred. Bayesian methods, per contra, take a

probabilistic view of parameter estimation, using Bayes’ theorem (see Appendix A.1

for mathematical definitions and details) to update model parameters and their un-

certainties. In certain scenarios these methods contain inherent model regularisation

contained within the marginal likelihood, sometimes referred to as the Bayesian
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Occam’s razor [18]. Beck and Katafygiotis provide a review of Bayesian model

updating [19, 20]. Nonetheless most of the current model updating methodologies

fail to account for uncertainties associated with model form errors, known as model

discrepancy. Failure to consider this form of uncertainty will often lead to bias in

the estimated parameters, and therefore incorrect health statements.

Inverse model-driven technologies suffer from several challenges when implemented

as part of an SHM strategy. Firstly, the type and number of parameters to use must

be selected [21, 22]. In scenarios where damage is unknown (e.g. both in location and

type), as is often the case, this can lead to an especially large number of parameters.

Parametrisation becomes increasingly challenging as model fidelity increases, where

there are a large number of potential parameter sets. Another difficulty is that of

interpreting the updated parameters to make a decision about the structure’s health.

This can be especially difficult when parameters affect structural stiffness, as multiple

phenomena influence changes in stiffness. An accurate understanding of the physics

must inform whether updated parameters are no longer physically meaningful rather

than altered by the presence of damage, and constraints placed on the updating

process when this is the case. As mentioned, variability and uncertainties within

the ‘target’ data must be handled as part of the updating process. Moreover, these

issues are confounded by the problem that a solution, or a unique stable solution,

for the inverse approach cannot always be achieved due to ill-conditioning. These

non-identifiability issues become of increasing concern when the parameter values

are being used for health diagnostics, as repeats of the update may lead to different

conclusions.

1.2.2 Data-Driven Approaches

Data-driven methods approach SHM as a pattern recognition problem, where a

statistical model is ‘learnt’ from a set of training observations from the structure

and used to label new in-service data [4]. As the data sets are from the structure in

operation, the complete loading environment is incorporated into establishing the

normal, undamaged condition (and any other labelled classes). This category of

approach removes the need for developing any physics-based models of the structure,

relying solely on the information contained within the data, inherently capturing

variations and uncertainties that the data contains.
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A general framework for data-driven approaches involves the steps outlined as follows

[4, 5]:

• Sensing and data acquisition — optimally located sensors acquire data

from the structure.

• Pre-processing — data normalisation, cleaning, compression and fusion occur,

with the aim of removing confounding influences, problems arising from the

acquisition phase, reducing dimensionality and combining multiple information

sources.

• Feature extraction — data is converted into damage sensitive features,

quantities that clearly state the damage function to be learnt.

• Post-processing — features may need additional normalisation, cleaning,

compression or fusion.

• Machine Learning — a classification, regression or density estimation algo-

rithm is trained using the extracted damage sensitive features.

• Decision — new in-service data are provided to the machine learning method,

analysed and a decision about the health state is made.

Crucial decisions for a data-driven approach are what features and machine learning

method to utilise. The objective of any machine learning technology within SHM is to

infer trends or functions such that the relationships define a normal condition, where

a departure from the normal condition diagnoses damage. These techniques can be

categorised into solutions for three main problems, stated in order of complexity

[23, 24]:

• Classification - data are assigned labels based on an inferred decision bound.

• Regression - an unknown function is inferred based on an input-output

mapping.

• Density Estimation - clusters of probability densities are inferred from data.

Further to these divisions, machine learning methods can be categorised as supervised,

unsupervised and semi-supervised. Supervised and unsupervised algorithms are



1.2. APPROACHES TO STRUCTURAL HEALTH MONITORING 7

distinguished by whether labels for data (e.g. the damage state of the structure) are

known or unknown respectively. Semi-supervised learning combines both labelled

and unlabelled data, usually where the latter is more numerous. Typically, regression

and classification are supervised problems whereas density estimation is unsupervised.

Furthermore, due to the absence of labelled data, unsupervised methods can only be

used to perform novelty detection — the process of inferring whether a change has

occurred. Once a difference has been detected, labels need to be obtained in order

to make statements about what the change refers to, therefore requiring a level of

supervision at this stage. On the other hand supervised methods can be used to

perform levels 1-4 of Rytter’s hierarchy. A variety of classification methods — such

as Support Vector Machine (SVM) [24], Relevance Vector Machines (RVM) [25],

and Artificial Neural Networks (ANN) [26] — regression methods — for example,

Gaussian Process (GP)s [27] and ANNs [26] — and density estimation techniques

— e.g. Gaussian mixture models, K Nearest Neighbours (KNN) and kernel density

estimation — have been implemented within the SHM literature. For a review on

machine learning methodologies implemented within SHM and their successes the

reader is referred to [4, 28].

Challenges remain in implementing data-driven methods. Supervised approaches

require in-service, labelled data from all damage states of interest in order to infer

robust decision thresholds. This is often not economically viable or feasible at a

full-system level, resulting in a significant challenge to their implementation. In

addition, unsupervised techniques suffer from all the complexities of performing

density estimation, as well as challenges in obtaining labels when in-service data

appears outside the normal condition. Semi-supervised learning, although providing

a degree of solution to these problems, still requires some level of labelled full-system

data.

1.2.3 Forward Model-Driven Approaches

The third, and less established category of approach to SHM, is forward model-driven

SHM. Here models are utilised in a forward manner, whereby their predictions form

training data for supervised machine learning methods [11]. This class of technologies

incorporates elements of both inverse model-driven and data-driven, where model

calibration theory and machine learning techniques are combined. The motivation

for developing forward model-driven approaches is to aid the challenges in obtaining
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labelled damage state data, as well as removing complexities in inferring damage

from parameter updates.

Few examples of forward model-driven approaches exist within the literature. FEA

models have been used to generate features for ANNs in performing damage identifi-

cation in bridges [29, 30]. Satpal et al. implemented a combined model updating

and SVM approach where model predictions trained the classier [31], with Hariri-

Ardebili and Pourkamali-Anaraki applying a similar methodology to concrete dams

[32]. Most of these approaches utilise deterministic FEA model outputs, with a few

adding arbitrary noise terms to replicate variability, whilst others propagate ‘known’

parameter uncertainties through Monte Carlo realisations. None of these methods

consider model form errors, and either do not attempt to validate their models or

implement full-system damage state data in the validation process. As a consequence

these approaches fail to tackle the key challenges facing SHM technologies. This

lack of thorough investigation within the literature and failure to address key SHM

challenges provides the motivation for clearly outlining a forward model-driven frame-

work, presenting the main difficulties and providing technological solutions to these

issues.

1.3 Objectives

This thesis seeks to establish and develop a framework for forward model-driven

SHM, providing a methodology for overcoming the aforementioned issues with current

inverse model-driven and data-driven approaches to SHM. Contributions are made

in developing specific technologies required for this category of approach, focusing

on three main challenges:

• Defining and generating a validation procedure for forward model-driven SHM,

requiring new validation metrics that consider complete probability distribu-

tions.

• Calibrating computer models under various sources of uncertainty, including

model discrepancy — important for producing accurate forward predictions.

• Tackling issues associated with creating a validated full-system model when

observational data is not obtainable at this level.
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By outlining challenges to the proposed framework, providing potential research

avenues and appropriate technologies, it is hoped that this category of approach will

receive a wider uptake within the SHM community.

1.4 Chapter Summary

The outline of this thesis is as follows:

Chapter 2 — The proposed framework for performing forward model-driven SHM

is presented. Motivation for the approach is discussed along with an introduction to

key components and challenges to implementation, culminating in an explanation of

the research objectives targeted by this thesis.

Chapter 3 — Validation within a forward model-driven context is discussed, whereby

a validation strategy is determined. Specific validation metrics that consider complete

probability distribution are defined and compared on numerical examples.

Chapter 4 — Due to the computational burden of evaluating a computer model,

such as an FEA model, and the numerous runs required for most statistical and

optimisation methods, computationally efficient emulators are outlined. Specifically

Gaussian Process emulators are investigated, discussing issues of implementation

and validation before describing extensions for large data sets, multiple outputs,

stochastic computer models and dynamic processes.

Chapter 5 — The first of two chapters proposing methods for dealing with model

discrepancy inference. A mathematical formulation for performing Bayesian Cali-

bration and Bias Correction is defined before being applied to two representative

building structure examples.

Chapter 6 — An alternative approximate Bayesian methodology for achieving

calibration whilst accounting for model discrepancy is described, namely Bayesian

History Matching. Extensions to the methodology are proposed with techniques

for incorporating sequential design strategies, as well as functional inference of the

model discrepancy via importance sampling. The technology is subsequently applied

to a representative building structure case study.

Chapter 7 — The problem of validating a full-system model without health state

data at this level is investigated. A multi-level uncertainty integration strategy using
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a subfunction discrepancy approach is developed in which multiple sub-system level

models are validated and their uncertainties propagated through to the full-system

model. This technique is explored in a numerical case study of a shear structure

under the introduction of reduced bolt tension and open cracking.

Chapter 8 — Themes and technologies presented throughout the thesis are brought

together and conclusions are outlined. Merits of the proposed technologies and strate-

gies are discussed along with challenges for implementation and their combination

in a forward model-driven SHM framework. Finally areas of further research are

detailed.



Chapter 2

Forward Model-Driven

Structural Health Monitoring

SHM technologies that utilise physics-based models have often approached structural

health diagnosis by using changes to inferred parameters as a method for making

health statements, part of the inverse model-driven category of approaches. These

techniques often suffer from non-identifiability issues, difficulties in parametrisation of

the model and interpretation of the updated parameters. In contrast, forward model-

driven SHM provides a framework whereby validated models, employed in a forward

manner, generate predictions of damage sensitive features that are statistically

representative of health state data obtained from the operational structure. The

emphasis in this class of methods is that models can be used as a proxy in order

to generate damage state data that would otherwise not be economically viable or

practically infeasible to obtain from the in-service structure. These health state

predictions from models are subsequently incorporated in training pattern recognition

or machine learning classification technologies, which can be implemented online in

order to make health diagnostic decisions.

As a result, forward model-driven SHM provides a solution to the lack of available

damage state data problem within data-driven approaches. Furthermore, models offer

additional tools for performing feature selection as well as the design of monitoring

systems, i.e. the locations, type and positions of a particular sensor network a

priori to implementation. Finally, the physics-based models developed in a forward

model-driven approach offer a methodology for performing prognosis, achieving the

11
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complete set of levels in Rytter’s hierarchy.

This chapter formally outlines a framework for forward model-driven SHM, capturing

the key procedures and technologies required to generate robust health state predic-

tions from models. The framework is summarised in a flowchart providing a clear

implementation strategy and a division of the methodology into research objectives.

Components of the framework that offer significant benefits or require additional

research for implementation are subsequently highlighted, providing motivation for

the proceeding chapters.

2.1 A Framework for Forward Model-Driven Struc-

tural Health Monitoring

Forward model-driven SHM offers an alternative methodology for approaching the

problem of SHM. The framework, built around utilising models (herein defined as

simulators) in a forward manner, seeks to tackle challenges associated with both

inverse model-driven and data-driven approaches. This is achieved by employing

models in a forward manner, reducing many of the difficulties associated with the

parametrisation and interpretation of updated parameters in inverse model-driven

approaches and providing a practical and cost-effective technique for designing sensor

networks, performing feature selection, obtaining health state data and achieving

prognosis, all of which are challenges to data-driven methods.

Forward model-driven methods are comprised of two main components; generating

representative damage state features from simulators, and using those predictions to

train machine learning or pattern recognition approaches. The second component,

well studied within the data-driven category of SHM, has been demonstrated to be

effective when labelled damage state data is available, as outlined in Section 1.2.2.

Within a forward model-driven approach these techniques generally remain math-

ematically and algorithmically the same, with the only difference arising from the

source of training data, i.e. simulator based predictions. Consequently, the major

challenges in establishing a forward model-driven strategy are in developing method-

ologies and technologies that achieve the objective of the first component, namely

the generation of representative damage state features from a simulator.

Generating representative predictions from simulators means tackling several key
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challenges. Firstly, there must be a method for determining whether simulator

predictions of health states are representative of those obtained operationally. This

requires the definition of what a valid simulator prediction is within the forward

model-driven context. In order to develop this definition an understanding of how

these prediction are used within classification methods must be established. In a

data-driven framework, features extracted from operational data are often employed

in training decision bounds that capture the expected behaviour of the particular

damage feature under each damage scenario in the training set. This means that

health state data generated from simulator predictions must capture the inherent

variability and progression of the health state in question. A simulator will therefore

be valid if its predictions generate statistical distributions of health states that are

statistically similar to those obtained observationally. Consequently, it is the author’s

opinion that a non-deterministic philosophy is required to realise this goal.

Secondly, generating statistically representative predictions will involve some level of

calibration and a validation procedure. Unfortunately, both these processes require

data from the real-world structure leaving the conundrum of how to calibrate and

validate the simulator given that health state data is neither feasible to obtain nor

cost-effective in the majority of applications. If this question is not tackled, forward

model-driven approaches simply become an expensive and demanding way to perform

sub-standard data-driven SHM, introducing further approximations and modelling

challenges. One solution to this problem is the division of the structure in question,

and hence the simulator, into a set of components, sub-assembly etc., for which

obtaining health state data is feasible and economically viable. In this scenario

a full-system, such as a aeroplane, is divided into various sub-systems, e.g. wing

panels, riveted joints, landing gear assemblies, coupons etc., where each sub-system

can be tested under damage types which are expected to be likely causes of failure

in the full-system. Small scale test strategies can then be developed, or existing

certification tests used to collect data sets that can be implemented in calibrating and

validating the set of simulators. The usefulness of forward model-driven technologies

rest on the ability to utilise and integrate these sub-system data sets into calibrating

and validating sub-system level simulators, which when propagated through to the

full-system, via an algebra of simulators and uncertainty management, produce valid,

i.e. statistically representative predictions, which have required no full-system health

state data. Obviously this is an incredibly ambitious goal, nonetheless methods such

as multi-level uncertainty integration strategies offer techniques for undertaking such

a challenge.



14 2.1. A FRAMEWORK FOR FORWARD MODEL-DRIVEN SHM

Thirdly, procedures for calibrating simulators should involve mechanisms for handling

multiple sources of uncertainty, especially those from model form errors, known as

model discrepancy. Statistically representative predictions will not often be achievable

without capturing observational variability, along with parameter uncertainties

and accounting for any functional model discrepancy — the differences between

simulator outputs and observational data. Accordingly, it is the author’s opinion

that calibration will be best achieved in a probabilistic framework where statistical

models are constructed that have mechanisms for quantifying uncertainties from

various sources, including observational variability, inherent stochasticity due to

parameter uncertainties and model discrepancy.

The proposed forward model-driven SHM framework outlined within this chapter

aims to capture the processes required to overcome these challenges. Figures 2.1

and 2.2 present a flowchart of the framework, showing the progression from sub-system

analysis to full-system predictions and health state identification.

The flowchart in Figs. 2.1 and 2.2 is described as follows. Prior beliefs about types

of damage the full-system may be subject to are identified and used to divide

the structure into appropriate sub-systems; where these damage mechanisms can

be captured. These divisions of the structure are then analysed to ensure that

experimental data, required for calibrating and validating these sub-systems, is both

practically and economically feasible. If this is not the case then divisions of the

full-system are updated based on cost-analysis. Once acceptable sub-systems are

identified the process moves to the sub-modelling phase.

For each sub-system simulators are constructed and validated in order to capture the

relevant damage mechanisms. This process begins with defining prior assumptions

about the simulator’s model form based on the appropriate damage physics. This

leads to simulator development where computer software (such as a FEA, Computa-

tional Fluid Dynamics (CFD) or multi-physics packages) are utilised or analytical

models constructed such that the simulator captures the target process and damage

mechanisms. Verification is performed to ensure that the numerical methods and

approximations within the simulator behave as expected. If the simulator fails this

verification process the simulator development stage is repeated, with an update to

the model form. Following the simulator passing the verification processes, damage

feature selection is performed. The simulator is utilised to explore potential outputs

and their mathematical transforms sensitivity to the damage scenarios being mod-

elled. The most sensitive damage feature(s) is/are then employed in developing an
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Figure 2.1: Flowchart of a forward model-driven framework — Part 1.
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Figure 2.2: Flowchart of a forward model-driven framework — Part 2.
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experimental test strategy. This process involves using the simulator to identify the

locations, number and sensor types that can be employed in obtaining the calibration

and validation data sets for the sub-system in question. The test strategy is assessed

to ensure that it is cost-effective and practical, where failure may lead to the adop-

tion of alternative damage features and/or test strategies. Proceeding acceptance

of the test strategy, sub-system data is collected, generating both a calibration and

validation set. At this time design of computer experiments are generated in order

to provide simulator runs for the calibration and validation processes, capturing the

expected input and parameter domains. The simulator evaluations and sub-system

calibration data set are then used to infer the parameter distributions as well as

the model discrepancy for the damage types being modelled. Subsequently, the

calibrated and bias corrected simulator outputs are validated against an independent

data set from the sub-system. Failure to pass the validation requirements will either

lead to better defining the simulator input and parameter domain via additional

simulator runs, the collection of more sub-system data, or in the worst case an

update of the simulator through some improvement model selection. Which path to

take requires a detailed decision process, left as an area of further research. If the

particular sub-system simulator is determined to be valid then the next sub-system is

constructed and validated until all the simulators are deemed valid. It is noted that

some sub-system simulators will require inputs or parameters that are determined

from other sub-system simulators within the chain.

After creating the required validated sub-system simulators a multi-level uncertainty

integration process is employed. The simulator outputs and their quantified uncer-

tainties are integrated to make predictions at a full-system level. At this point it

may be possible to obtain full-system undamaged state data. This can be used to

confirm and validate the model form of the complete full-system model — however

the damage mechanisms are assumed to be captured and validated based on the

sub-system modelling. If outputs from the multi-level uncertainty integration scheme

are not valid then the complete full-system model is updated, and the algebra between

simulators and their uncertainties amended.

The successive tasks, after generating a valid full-system model from the multi-

level uncertainty integration strategy, are to identify and select damage sensitive

features from the model. Next these selected damage features are used to develop a

monitoring system, calculating locations, number and types of sensors required to

ensure an appropriate probability of detecting the hypothesised damage scenarios.
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The proposed monitoring system can be assessed in order to determine whether it is

practical and cost-effective, otherwise alternative damage features and/or monitoring

systems are proposed.

The next processes involve generating training and validation data of the selected

damage features from the full-system model. This will involve a design of computer

experiments in order to cover the phenomena of interest. A chosen classification

technology is subsequently trained using the training data sets and validated using

the independent validation set. The process is repeated, updating the classification

methods parameters, or acquiring training data from the full-system model until the

inferred classification method is deemed valid.

The SHM monitoring system can now be employed online, once the sensing infrastruc-

ture is deployed. As in-service data is collected it is transformed into the appropriate

feature space before being classified based on the inferred classification bounds.

These predictions will identify the damage location, types and extent informing

which sub-system simulator combination to use in performing simulator-based prog-

nosis. The acquisition of in-service data can also be used to improve the full-system

model, where additional model selection and inferences can be performed to increase

accuracy of predictions and reduce modelling uncertainties.

Based on the flowchart in Figs. 2.1 and 2.2 the framework has several main elements:

• Model Development and Selection (green) - using prior beliefs about a

structure and the processes to be modelled, in order to select an appropriate

simulator that captures the model form at the required level of fidelity. Model

selection specifically defines the process of using observational data to select

the most appropriate simulator.

• Damage Feature Selection and Monitoring System Design (orange) -

the ability to use a simulator to investigate potential output quantities and

mathematical transforms that are sensitive to the onset of particular damage

scenarios. Monitoring system design is performed by utilising the simulator

to explore the measurement type, number and location of sensors before

experimental or in-service data are acquired.

• Simulator Calibration (and Validation) (purple) - the ability to infer

system parameters, model discrepancy and all associated uncertainties intro-
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duced in the modelling and data acquisition processes via inverse Uncertainty

Quantification (UQ) methods; where validation is performed probabilistically.

• Multi-Level Uncertainty Integration (red) - the ability to use sub-system

level observational data to calibrate and validate sub-system level simulators,

which can be combined in a manner such that valid full-system predictions are

made without the need for full-system health state data.

• Health State Decision Strategies (blue) - machine learning or pattern

recognition methods used to infer decision bounds (as studied within data-

driven SHM research).

The proceeding sections outline these five key elements in more detail, highlight

challenges, and potential technologies and methodologies for performing each task.

2.1.1 Model Development and Selection

Model development is the process of building a simulator, either through computer

software, such as FEA, or numerical modelling, that captures the behaviour of a

given physical process. In the context of forward model-driven SHM this involves

creating a simulator that models particular damage events. To achieve valid simulator

predictions, research will need to go into developing more accurate mathematical

damage models.

The definition of model selection refers to the process of selecting the most appropriate

model from a set of candidate models given a data set. This often involves comparing

model evidences, i.e. the probability of the data z given a particular model Mi,

p (z |Mi), such as used in Bayesian Information Criterion (BIC) [33].

Model development and selection are challenging problems that ultimately rest on

the ability to define appropriate candidate models. Forward model-driven SHM also

provides the added complication in that although model development and selection

may be done on a sub-system level, the model that explains the sub-system data

best may not be the model that helps improve full-system predictions the most.

This difficulty means that additional research is required in analysing the trade-offs

between full-system predictive capability and appropriateness of the selected model

based on sub-system data.
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2.1.2 Damage Feature Selection and Monitoring System De-

sign

A clear benefit of forward model-driven SHM is that by developing simulators of the

structure various outputs and their mathematical transforms can be investigated as

potential damage sensitive features. Furthermore, once a particular damage feature

has been selected, the simulator(s) can be utilised in selecting and optimising a sensor

network all before physical testing or in-service data has been collected. This offers

significant cost benefits and risk reduction as monitoring setups can be considered

virtually.

One approach to damage feature selection using simulators is via sensitivity analysis

techniques, specifically Global Sensitivity Analysis (GSA) which aims to determine

the variation of an output quantity in terms of the variation in the inputs [34–36].

This would lead to an assessment of the sensitivity of a given set of outputs and

their transforms to changes in the inputs, specifically the extent and location of each

particular damage type being considered. In addition, the proposed features can be

assessed for sensitivity to other inputs, aiming to identify a feature that is sensitive

to damage alone, rather than other confounding influences.

Monitoring system design, i.e. selecting the number, location and type of sensors

to implement on a structure, has been attempted using a variety of methods, e.g.

energetic techniques [37], information [37, 38] and risk based approaches [39]. A

positive by-product of forward model-driven SHM is that the availability of simulators

means that these techniques become applicable within the framework.

2.1.3 Calibration

The success of a forward model-driven framework relies on the ability to generate

validated damage features that are statistically representative of those obtained

in-service. As a consequence, calibration is vital for capturing the behaviour of

the structure in operational conditions under different damage scenarios and in

producing robust health decisions. Various calibration methodologies exist and have

been implemented within inverse model-driven SHM, usually under the term of

model updating, as mentioned in Section 1.2.1. However, many of these approaches

fail to incorporate a mechanism for including model discrepancy, a phenomena that
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exists due to the fact that simulators contain simplifications or the absence of certain

physics leading to a mismatch between observational data and simulator prediction

even when the ‘true’ parameters are known. This section aims to demonstrate why

the exclusion of a belief that model discrepancy exists within a calibration process will

lead to misidentified parameter distributions, as well as poor predictive performance,

due to the simulator’s model form errors.

Model Discrepancy

The importance of incorporating a mechanism to account for, and infer, model

discrepancy within a calibration procedure is demonstrated on a numerical example

— a mass, tensioned wire system. Figure 2.3 illustrates a mass, tension wired system

with a centred and off-centred mass, for which the natural frequency can be calculated

using Eqs. (2.1) and (2.2) respectively.

wn =
1

π

√
T

Ml
(2.1)

wn =
1

2π

√
T (a+ b)

M(ab)
(2.2)

Where M is the mass in kg, T is the tension in N, l is the length in m between the

fixed boundaries, a and b are the offset distances (where a = l − b) and ωn is the

natural frequency in Hz. For the numerical examples parameter values are set for

l = 1, a = 0.2 and the observational mass M̂ = 5.43kg. The aim of calibration in

this numerical study is to find the posterior mass distribution given observations of

the natural frequency at ten equally spaced tensions from 200-1000N.

In the first scenario, no model discrepancy is present. This means that the simulator

has captured all physics that govern the behaviour of natural frequency for a reduction

in tension (for the mass, tensioned wire system). This leads to the simulator

having a functional form defined in Eq. (2.2). Consequently the observations are

also mathematically governed by Eq. (2.2) but with the addition of observational

uncertainty e ∼ N (0, 0.01).

In the second scenario model discrepancy is introduced. Here the simulator models
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Figure 2.3: Mass, tensioned wire system. Panel (a) presents a centred mass and
panel (b) an off-centred mass.

the mass, tensioned wire system as being fixed in the centre, representing a level

of missing physics in the problem. The observations are the same as obtained in

scenario one, i.e. from Eq. (2.2) with additive Gaussian noise.

For this numerical example Bayesian calibration is implemented (see Appendix A.1 for

more details on Bayes’ theorem) via Markov Chain Monte Carlo (MCMC), specifically

using a Metropolis-Hastings random walk algorithm as outlined in Algorithm 1.

The prior was p (θ) = N (5, 1), where θ is the parameter being calibrated, which

in this example is the mass M . A Gaussian likelihood function is implemented,

p (z | θ) = N (z | f(x, θ), σ2
n). The likelihood contains the simulator function f(x, θ),

given inputs x which here are tensions, parameters θ which is a given mass and a

fixed noise variance σ2
n = 0.01, the observations are denoted as z. For both scenarios

the proposal variance was V = 0.01 where 100, 000 posterior samples were generated

after a 10, 000 sample burn in (i.e. the first 10, 000 accepted samples are thrown away

to ensure the states of the Markov chain have entered a region of high probability).

The resulting Markov chains were checked for convergence.

Figure 2.4 presents the outcomes of calibrating the two scenarios via MCMC sam-

pling. Figure 2.4c displays the inferred posterior distributions of the mass for both

scenarios one and two, with a comparison of the ‘true’ parameter value 5.43kg.

This demonstrates that when the simulator and observational data come from the

same mathematical functions (i.e. there are no simplifications or missing physics)

calibration is achievable, reflected in the mean of the distribution closely matching

that of the true parameter, and the parameter distribution being clearly centred

around that value. However, when model form errors are present, as in scenario

two, the parameter distribution shifts away from the ‘true’ parameter (i.e. bias is

introduced); in this example almost no probability mass is located near the ‘true’
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(a) (b)
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Figure 2.4: The output natural frequencies and mass distributions from the two
mass, tensioned wire system scenarios. Panel (a) presents scenario 1, where the
simulator and observations are from Eq. (2.2) and panel (b) scenario 2, where the
simulator is from Eq. (2.1) and the observations from Eq. (2.2); the shaded regions
present the output distribution. All observations have additive Gaussian noise
e ∼ N (0, 0.01). Panel (c) displays the two posterior parameter distributions for each
scenario compared to the ‘true’ parameter M̂ .

value. This means that by not considering model discrepancy, inference of the ‘true’

parameter distribution will not be achievable. In addition, model form errors and

bias introduced in the inferred parameter distribution will lead to problems in the

output predictions; which are especially concerning for forward model-driven SHM.

Figure 2.4b demonstrates the introduced problems in the output predictions, which

are highlighted by a Normalised Mean Squared Error (NMSE) (for the mathematical

definition of NMSE the reader is referred to Section 4.2.2) of 5.4 compared to 1.5

for scenario one. Furthermore, the model form errors in scenario two have led to an

increase in variance ≈ 30% from scenario one, which would lead to extra complexity
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Algorithm 1 Metropolis-Hastings random walk

Set the proposal q
(
θ∗ |θi−1

)
= N

(
θi−1, V

)
R =chol(V ) . Calculate the Cholesky decomposition of V
Set θ0 . Set the initial state in the Markov Chain

for i = 1 : N do
θ∗ = θi−1 +Rε where ε ∼ N (0, 1) . Take a random walk

r = p(z |θ∗)p(θ∗)
p(z |θi−1)p(θi−1)

. Compute the ratio

ui ∼ U (0, 1)
if ui ≤ min(1, r) then
θi = θ∗ . Accept the sample

else
θi = θi−1 . Reject the sample

end if
end for

in inferring decision bounds for health diagnostics in SHM.

In conclusion, model discrepancy must be considered within the calibration approach

otherwise correct parameter inference is not obtainable and output predictions will

suffer. This is especially problematic for forward model-driven SHM as output

predictions from the simulator must be representative of those obtained in-service.

Chapters 5 and 6 outline and develop methods for accounting for model discrepancy

within the calibration process.

2.1.4 Multi-Level Uncertainty Integration

A significant challenge in the development of forward model-driven approaches to

SHM is that the methodologies employed must not require damage state data at a

full-system level, otherwise a data-driven method could be implemented that would

both perform better and at a reduced procedural complexity. This constraint means

that the problem of generating damage feature predictions has to be de-constructed

into sub-systems for which validation is possible. This depends on the assumption

that by capturing and correcting bias in the functional form of sub-system level

simulators, all damage mechanisms can be modelled and validated leading to a valid

full-system prediction when the sub-system simulators are combined.

Multi-level uncertainty integration offers a methodology for taking sub-system level

simulators where key model forms can be validated, such as the functional relationship
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when damage is introduced, and scale the uncertainties and model discrepancies

through to a full-system level prediction. This means that the damage mechanisms

are validated at a sub-system level, reducing the need for validation at a full-system

level. This is possible if the damage mechanics can be captured at a sub-system level

and appropriately scaled up. Chapter 7 outlines a potential strategy for performing

multi-level uncertainty integration using a subfunction discrepancy approach.

2.1.5 Health State Decision Strategies

Health decision strategies have been well studied within the data-driven framework

where a variety of machine learning methods have been successfully implemented

when labelled damage state data is available, as discussed in Section 1.2.2. All of

these techniques are applicable to a forward model-driven framework, with the key

difference being that the labelled health state data is generated from a simulator

rather than from observational data. A health decision strategy trained using a

full-system simulator provides additional insight. Firstly, any classified observational

data will relate to a damage state in the simulator, aiding the interpretation of the

type, location and extent of damage in the structure. Furthermore, once identified the

simulator can be used for prognosis, which is a significant challenge for data-driven

methods. In addition any health state data collected from the structure in operation

can help recalibrate and validate the simulators within the forward model-driven

framework. This means that the SHM system will continue to improve over time and

increase physical insight into structural behaviour under operational conditions. It is

noted that any operational data obtained can also be incorporated into the training

data set for the classification method as and when it becomes available.

Bayes risk classifiers are one method for making decisions about the health state of a

structure [39]. The technique aims to weight known outcome probabilities of events

(i.e. undamaged, de-lamination, cracks etc.) by the costs of that outcome occurring.

This allows a process whereby decision bounds are formulated as a function of the

likelihood of particular damage scenarios, their associated maintenance costs and

the cost of structural failure. A difficulty with implementing Bayes risk for SHM is

the ability to obtain the conditional probabilities of the chosen feature vector given

local damage states in particular regions, i.e. the probability of a feature vector

given some form of damage event. Forward model-driven SHM provides a potential

solution to this challenge by using full-system simulator predictions of feature vectors
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for different damage events, i.e. output predictions from the full-system simulator

for the range of damage scenarios being considered.

2.2 Conclusion

Forward model-driven SHM is defined as the process of creating a full-system simulator

of a particular structure for which health states can be simulated and damage sensitive

features obtained. The simulated damage state features are subsequently incorporated

into classification techniques where in-service data can be processed and classified

online.

The biggest difficulties in generating a forward model-driven approach is that of

creating a full-system simulator that accurately represents observational health state

features. As a result several modelling based technologies must be investigated and

developed in order to realise a robust forward model-driven approach to SHM. These

methods must solve several key issues. Firstly, a clear definition of valid health state

predictions must be outlined such that simulator predictions, and their statistical

distributions, are close enough to those obtained in-service — this is approached

in Chapter 3. If the simulator predictions are not adequately representative then

this may result in confusion of the classification method. Moreover, to achieve

representative predictions calibration must be employed. A consequence of forward

model-driven SHM’s main objective — producing representative predictions with a

simulator — means that model discrepancy must be considered during the calibration

process, in order to account for model form errors; this is investigated in Chapters 5

and 6. An additional complication to forward model-driven SHM is that calibration

must be performed without obtaining full-system health state data. This leads to

the challenge of using sub-system level data to calibrate a full-system level simulator,

addressed using a multi-level uncertainty integration strategy in Chapter 7.

The forward model-driven framework proposed within this chapter highlights five

areas of further development: model development and selection, damage feature

selection and monitoring system design, simulator calibration (and validation), multi-

level uncertainty integration and health state decision strategies. Based on the

aforementioned challenges this thesis seeks to develop methodologies for approaching

simulator calibration in Chapters 5 and 6 (and validation in Chapter 3) as well as

developing methods for multi-level uncertainty integration in Chapter 7.



Chapter 3

Validation Metrics

Validation is a crucial part of any model generation (especially for complex simulators),

without which trust in outputs for specific input domains cannot be obtained. This

is especially vital in forward model-driven SHM where confidence must be obtained

in order to know that the simulator predicts statistically representative outputs;

otherwise the process cannot be guaranteed to appropriately detect damage. The

term validation is broadly applied in many aspects of engineering with several

different connotations. For clarity here validation refers to a process of quantifying

the measure of fit between the simulator outputs and observational data, to ascertain

the appropriateness as well as developing confidence in the simulator for its intended

context of use [40].

A validation procedure requires obtaining observational data — for a forward model-

driven SHM context this means collecting data from damage states. Potential

solutions to this particular problem are discussed in Chapter 7. This chapter deals

specifically with the challenge of validating probabilistic outputs. This is required as

the objective of forward model-driven SHM is to generate statistically representative

outputs, which in turn leads to the use of probabilistic UQ techniques. Consequently

the chapter seeks to outline a validation strategy for probabilistic outputs (which

can be applied more broadly to engineering simulators) detailing validation metrics

that could be used.

27
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3.1 Validation

In 1987 George Box famously articulated with his colleague Norman Draper that

“All models are wrong, but some are useful.” [41]. The statement, originally applied

to statistical models, also holds true for engineering simulators. As a result the role

of validation within engineering is often determining the ‘usefulness’ of a particular

simulator for a given context or use case. The objective can be seen as more than an

assessment of how ‘right’ the simulator is but whether the simulator is fit for purpose.

Consequently, the initial starting point for a validation strategy is determining what

the simulator will be used for and within what context. For forward model-driven

SHM the simulator(s) are utilised for making predictions of particular damage

mechanisms, with the aim of producing statistically representative damage state

data to that obtained via physical observations. The context is that a simulator is

deemed appropriate if the outputs lead to inferred decision bounds with an adequate

rate of detection — to be determined by the SHM application. This chapter aims to

outline a validation procedure and validation metrics that aid the objectiveness of

decision making about adequacy of the simulator(s) for this context. However, it is

noted that these decisions are often subject to the particular industrial requirements.

Within the field of Verification and Validation (V&V) attempts have been made to

formalise validation procedures such as the ASME V&V-20 [42], yet there is not a

formalised and accepted procedure for dealing with probabilistic simulators within

the community.

For clarity of terminology a validation metric here refers to mathematical operators

that quantify the dissimilarities between predictions and observational data. A

metric, where used on its own, refers to the mathematical distance definition; a

distance D (·, ·) is a metric if it abides by four requirements [40]:

1. Non-negative: D (x, y) ≥ 0

2. Identity of indiscernibles: D (x, y) = 0 if and only if x = y

3. Symmetric: D (x, y) = D (y, x)

4. Triangle inequality: D (x, z) ≤ D (x, y) +D (y, z)

where x, y and z are three quantities — in the simplest case points. It may be



3.1. VALIDATION 29

-7-6-5-4-3-2-10

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 3.1: An illustration of validating statistical distributions. The example shows
the simulator output distributions (−) — the percentage change in the first and
second natural frequencies, ∆ω1 and ∆ω2 respectively — for a cantilever beam with
a crack of various sizes against the experimental observations (·) and their Gaussian
representations (−−).

necessary for a validation metric to be a mathematical metric, the merits of this will

be discussed further within the chapter.

The goal of each simulator within forward model-driven SHM, as outlined by Chap-

ter 2, is to predict statistical distributions that capture the behaviour of observed

damage state data. An illustration of the problem is demonstrated in Fig. 3.1.

Rather than the traditional deterministic view, where a difference would indicate

the accuracy of the simulator, the simulated responses are distributions and the

observational data often a collection of measured responses. A comparison of the

means or even low order statistical moments (such as variance or skewness) often will

not sufficiently quantify the simulator adequacy. Scenarios could be observed where

the expectations of the simulator and observations are extremely close but where

there is significant mismatch in the remaining probability mass. In these cases the

adequacy of a simulator may be obscured by ignoring all the available information.

This leads to the conclusion that validation procedures, and more specifically the

validation metrics used to quantify the appropriateness of the simulator, should

involve the complete distribution and/or data point set.

The following sections outline a strategy for validating probabilistic simulators more
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generally, but with a focus on the context of forward model-driven SHM. The

particular tools and validation metrics that may be employed as part of a validation

strategy are outlined and discussed.

3.1.1 A Validation Strategy

Any proposed validation strategy must assess how simulator adequacy will be ap-

proached. In a probabilistic setting, especially in forward model-driven SHM, the

simulator’s aim is to produce outputs that define or come from the same underlying

distribution as observed damage state data. The definition of adequacy may depend

on the degree of overlap between one damage state distribution and the next. In

Fig. 3.1 when damage is below 7.5mm there is significant overlap in the distributions.

If the simulator predictions were to have inflated variance or heavier tails in this

region the inferred decision boundary may become more difficult to infer than if

observed damage state data were used. In contrast if there is a better degree of

separability, such as in Fig. 3.1 when damage is greater than 17.5mm, then this

level of inadequacy may matter less. Nonetheless the goal of probabilistic simulator

predictions are that it is statistically significant that the observed data plausibly

came from the predicted simulator distribution.

A key statistical tool for assessing whether one distribution is not statistically similar

to another is hypothesis testing. The premise of hypothesis testing is to state a

statistically plausible claim (otherwise the test is irrelevant) and assess the data given

that claim to decide whether it is statistically significant to reject that claim. Debate

is had as to whether hypothesis testing is a useful or even a desired tool for validation.

The objections to hypothesis testing come from the same ideas as Box and Draper,

e.g. the statement by Oberkampf and Roy that “Any model can be proven false, given

enough data” [40]. Indeed hypothesis testing as the only validation method within a

strategy would be problematic, as the results do not state a measure of inadequacy

or give diagnostics for simulator improvement. Another complaint is that hypothesis

testing is subjective to the modeller, as they have to devise their own hypothesis

(which must be testable and conceivable) as well as stating the level of statistical

significance to which the hypothesis can be rejected. Undeniably this may cause

problems but it would be naive to ignore the fact that many assumption are made by

a modeller in the construction of a simulator. Certainly good practice, at a minimum,

would be for the modeller to state all assumptions about the hypothesis test and
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if possible for an external individual to perform the hypothesis test. Furthermore

hypothesis testing can provide a first pass in a validation scheme. It can help decide

statistically whether further interrogation is required. It is therefore the author’s

opinion that hypothesis testing is a useful initial tool within a wider validation

strategy.

The next stage in assessing simulator validity is acquiring a quantitative assessment of

the difference between simulator predicted and observed outputs. In a deterministic

setting the difference (or even percentage difference) between results provides a

clear and interpretable assessment of the adequacy. In a probabilistic setting several

distance metrics are available for assessing the difference between distributions,

these are explored in Section 3.3. These may provide more information about

how inadequate the simulator is compared with hypothesis testing. At this point

it is appropriate to define, in the author’s opinion, a criteria for evaluating the

appropriateness of validation metrics for probabilistic engineering simulators; these

are:

1. It should quantify the difference between the simulator predictions and obser-

vational data.

2. It should be interpretable and aid identifying simulator improvements.

3. It should provide objective information and be consistent when applied to

different probabilistic models or applications.

4. It should account for the complete form of the distributions (and not just

statistical moments) - if the underlying distribution of the observational data

is unknown it should have a non-parametric estimator.

The third stage of the strategy is to use visual diagnostic tools. These provide a

method for determining sources of inadequacy aiding simulator improvements. This

stage will often provide a high amount of information as to the source of difference

between simulator and observations, but may also be more subjective.

Finally standard deterministic metrics can be implemented to assess mean (or modal)

prediction validity. A deterministic approach should be taken with caution as by

considering the mean (or mode) only results in discarding information from the

predicted distribution.
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The proposed strategy is summarised as:

• Hypothesis testing

• Quantification using probabilistic validation metrics (e.g. distance metrics)

• Visual diagnostics (e.g. witness function, Quantile-Quantile Plot (QQ-Plot))

• Deterministic validation metrics

Each layer aims to provide more detail about the sources of inadequacy and poor

model performance. The follow sections aim to outline tools within this strat-

egy before applying them to numerical examples in order to conclude about their

performance.

3.2 Hypothesis Testing

Hypothesis testing, also known as significance testing, is a statistical method for

deciding whether to reject or fail to reject a given hypothesis. These hypotheses are

usually inferred given a one- or two-sample based problem. In the validation context

described by Fig. 3.1 it will often be the case that an independent two-sample test

is required. This follows as the decision about whether the simulator output is not

invalid1 will involve sets of observational samples and simulator predictions (either

in known distribution form or as samples). A two-sample hypothesis test states

that given two sets of finite independent and identically distributed (i.i.d.) samples,

X ∼ P and Y ∼ Q, a statistical test can be formed in order to distinguish between

the null hypothesis H0 : P = Q, or an alternative hypothesis Ha : P 6= Q; where P
and Q are probability measures. The statistical test is formed by calculating a test

statistic T and comparing this to a threshold t specified by a significance level α,

where the null hypothesis is rejected if the test statistic exceeds the threshold. A

hypothesis test starts with the belief that the null hypothesis is true, and works by

proof of contradiction. This means that the threshold is determined by an α level

for the distribution P of the test statistic T under the assumption that H0 is true,

i.e. P (T > t) ≤ α (where P (T > t) is referred to as a probability value (p-value)).

1Statistically a hypothesis cannot be proved, and therefore determined completely valid.
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Figure 3.2: An illustration of the probability of type I error α and type II error β.

A hypothesis test by construction makes a decision based on a finite set of samples.

As a consequence incorrect decisions can be made from two types of error source:

type I and II. An incorrect decision based on the null H0 being rejected when it is

actually true is defined as type I error — known as false positives — in contrast to

type II error — known as false negatives — where the null is accepted when it is

actually false. One minus the type II error is known as the power of the statistical

test. Put another way, type I errors can be seen as rejecting a valid simulator and

type II errors as not rejecting an invalid simulator. Hypothesis tests are determined

as α-level tests where the value for α defines the upper bounded probability of I

errors. In addition a hypothesis test can be considered consistent if it is possible for

type II errors to be zero in the limit of an infinite sample size. As a result an α-level

hypothesis test should aim for the probability of type II error, defined by β, to be

as low as possible whilst bounding type I error at the prescribed value. Figure 3.2

provides an illustration of the two types of error. Typically within the statistical

community a significance level of 5% is implemented however there is not complete

consensus and for many applications a lower value should be used.

The approach shown so far defines a class of frequentist methods for testing hypotheses.

In Sections 3.2.1 and 3.2.2 examples of specific frequentist significance tests that

could be appropriate for validation within a forward model-driven SHM context

are presented. Section 3.2.3 provides an alternative philosophical view, outlining a

Bayesian approach to hypothesis testing.
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3.2.1 Kolmogorov-Smirnoff Test

The Kolmogorov-Smirnoff (KS)-test, a well established hypothesis test, is constructed

from a Cumulative Density Function (CDF) based test statistic, specifically the

Kolmogorov distance. The Kolmogorov distance is the maximum L1 norm between

two CDFs bounded [0, 1] and mathematically defined by Eq. (3.1).

DK (P,Q) = sup
x∈R
|FP (x)− FQ (x)| (3.1)

Where sup is the supremum, the least upper bound of pointwise differences and

FP (x) is a CDF for the probability measure P over the random variable x. Figure 3.3

illustrates an example of the distance for a set of samples (forming an Empirical

Cumulative Density Function (ECDF)2) F̂Q (x) and a known distribution FP (x) —

however the distance holds if either P or Q are known or empirical. Simply the

Kolmogorov distance is the largest vertical difference between the two CDFs. A

strength of the Kolmogorov distance, and hence the KS-test is the ability to handle

any empirical and/or known CDFs, making it a flexible non-parametric tool for

validation purposes. A one sample test compares an ECDF with a CDF and two

sample test, two ECDFs.

The KS-test is a hypothesis test for one-dimensional CDFs where the null hypothesis

is H0 : FP (x) = FQ (x) [43]. The Kolmogorov theorem states that as the number of

samples tends to infinity, if the null hypothesis cannot be rejected, then
√
nDK (P,Q)

tends to a Kolmogorov distribution that is not dependent on the hypothesised

distribution, where n are the number of samples. For a two sample test the same

theorem holds, however the quantity becomes mn
n+m

1/2DK (P,Q), where n and m are

the number of points for each sample. The threshold t for a particular significance

level α is often obtained using predefined tables, such as the Miller approximation

table [44], for which the null hypothesis H0 is rejected when DK (P,Q) > t(α). The

test can also be performed by comparing whether α > p (X |H0) — the significance

level against the p-value. The KS-test also has an asymptotic power (1− β) of 1,

meaning that type II error will reach zero given an infinite sample size. However

a drawback of the test is that it is often more sensitive to deviations between the

distributions in the centre than the tails.

2An ECDF is mathematically defined as F̂N (x) = 1
n

∑n
i=1 1(Xi ≤ x).
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Figure 3.3: An example of the Kolmogorov distance between P = N (0, 0.82) and 20
samples from Q = T (5) where DK (P,Q) = 0.26.

3.2.2 Maximum Mean Discrepancy Test

The Maximum Mean Discrepancy (MMD) two sample test, a relatively new technique,

uses the MMD distance as a test statistic in order to distinguish between the null

hypothesis H0 : P = Q and the alternative hypothesis H0 : P 6= Q [45]. MMD is a

measure of the maximum distance between the mean embeddings of two sample sets

in a Reproducing Kernel Hilbert Space (RKHS); projected using the function class

F , where the function f is called a reproducing kernel k(·, ·). The distance is defined

in Eq. (3.2).

DMMD (P,Q) = sup
f∈F
|Ex (f(x))− Ey (f(y))| (3.2)

Where x and y are samples from P and Q respectively. There are several kernel types

that can be chosen within the MMD metric with a popular choice being the radial

basis kernel Eq. (3.3). For most kernel types there are a set of hyperparameters that

need to be determined, e.g. σ for the radial basis kernel.

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
(3.3)
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A common approach for determining these hyperparameters is to use the median

pairwise distance among the joint data [46]. The choice of kernel should reflect the

prior belief about the smoothness of underlying distribution and are often selected in a

heuristic manner. However, Gretton et al. proposed an optimisation methodology for

large sample sets whereby for a given α level the technique selects linear combinations

of kernels that minimises the probability of type II errors and hence maximises the

test power [47]. The method has been show to perform well in large data sets where

the median heuristic start to fail, and kernel selection via selecting the kernel with

the largest MMD fails. In contrast, most validation tasks will involve small sample

sizes where the limited data could pose challenges to implementing this procedure.

MMD is a frequentist statistic and thus can be empirically estimated in both unbiased

and biased forms, depending on whether the U-statistics or V-statistics are used to

calculate the sample means. These two forms are shown in Eq. (3.4) and Eq. (3.5).

D2
MMDu (P,Q) =

1

m (m− 1)

m∑
i=1

m∑
j 6=i

k (xi, xj) +
1

n (n− 1)

n∑
i=1

n∑
j 6=i

k (yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k (xi, yj) (3.4)

D2
MMDb (P,Q) =

1

m2

m∑
i,j=1

k (xi, xj) +
1

n2

n∑
i,j=1

k (yi, yj)−
2

mn

m,n∑
i,j=1

k (xi, yj) (3.5)

Where m and n are the number of points in the samples X and Y respectively.

These two forms of the statistic will both be zero when P = Q and large when the

distributions are far apart.

The hypothesis test uses the quantity mD2
MMD (P,Q) (either in biased or unbiased

form) in comparison to the threshold t(α) in order to determine whether the null

hypothesis H0 : P = Q can be rejected, i.e. mD2
MMD (P,Q) > t(α), where α is

an upper bound on the probability of type I errors. The MMD two sample test is

also shown to be consistent [45]. The threshold t(α) is calculated via a bootstrap

approach where a data-dependent threshold is estimated from calculating the test

statistic from random permutations of the samples and finding the (1−α)th quantile
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[45, 48].

The approach has been implemented within the machine learning community as a

model criticism technique [48, 49]. In addition to the kernel (MMD) two sample

test, one sample test formulations have been created based on the Kernel Stein

Discrepancy (KSD) [50, 51] which may also be appropriate for validation.

3.2.3 Bayesian Hypothesis Test

Bayesian statistics offer a different view of hypothesis testing (see Appendix A.1

for details on Bayes’ theorem). This approach means that rather than using the

probability of the data given a hypothesis i.e. p (x |H1), the posterior p (H1 |x) —

the probability of the hypothesis given the data — is utilised, constructed as shown

in Eq. (3.6).

p (H1 |x) =
p (x |H1)p (H1)

p (x)
(3.6)

This can be compared to a second hypothesis H2 by p (H2 |x) = 1 − p (H1 |x) as

the evidence of our data p (x) incorporates the possibility that each of the stated

hypothesis being considered could be true, p (x) = p (x |H1)p (H1) + p (x |H2)p (H2).

By considering the ratio of the posteriors (also referred to as the posterior odds)

Eq. (3.7) can be defined.

p (H1 |x)

p (H2 |x)
=
p (x |H1)p (H1)

p (x |H2)p (H2)
(3.7)

From Eq. (3.7) the Bayes factor, the evidence of data x for H1 over H2 can be

formulated as in Eq. (3.8). As stated, for a continuous distribution this is the ratio

of marginal likelihoods i.e. the ratio of our data given all possible parameters of the

model and hypotheses.

BF =
p (x |H1)

p (x |H2)
=

∫
p (x | θ,H1)p (θ |H1)dθ∫
p (x | θ,H2)p (θ |H2)dθ

(3.8)

When priors for the hypotheses are too difficult to elicit, or not known, Bayes factor

can be implemented as a test of hypothesis instead, for example Sankararaman and
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Mahadevan use Bayes factor within an engineering validation setting [52]. However,

Bayes factor may not strictly be justified as a clear hypothesis test given the exclusion

of the prior odds p (H1)/p (H2). A more reasoned interpretation is that Bayes factor

is a measure how the data has changed the odds of H1 relative to H2 [53]. It is noted

that Bayes factor is similar to the ratio of BIC, which is a measure of log p (x |Mi)

where a model M can be thought of as a hypothesis H [33].

Model Reliability metric

The model reliability metric is one form of hypothesis used to create a validation

metric [54, 55]. This validation metric assesses whether the simulator output y and

observation data z ∼ N (µz, σ
2
n) are less than a given tolerance λ. The probability

of this hypothesis, that the simulator is valid HV , known as the model reliability

metric, can be constructed from Eq. (3.9).

p (HV | z) = p (|y − z| < λ) (3.9)

However, if σ2
n and y are considered deterministic then Li and Mahadevan state the

metric becomes an integral of a univariate Gaussian distribution over the tolerance

bounds, as shown in Eq. (3.10) [55].

p (HV | z) =

∫ λ

−λ

1√
2πσ2

n

exp

(
ε− (y − z)2

2σ2
n

)
dε (3.10)

Where ε is a dummy variable. This essentially is not a Bayesian treatment of the

problem and instead is a probability measure from a Gaussian likelihood. When

the simulator output is considered stochastic, due to parameter θ uncertainties,

the metric becomes the marginalisation p (HV | z) =
∫
p (HV | z,θ)η(θ)dθ (where

η(θ) is a simulator). In a multivariate setting the metric becomes the probability

that the Mahalanobis distance DM (y, zi) =
√

(y − zi)TΣ−1
y (y − zi) (where Σy is

the covariance matrix of y) is less than the normalised tolerance λM =
√
λTΣ−1

y λ;

p (HV | zi) = p (DM (y, zi) < λM | zi). Essentially the metric is the probability that

the normalised principle component is less than a given tolerance. This is a limited

metric as it only considers lower moments of the simulator distribution, and even

then only in its principle component. It is therefore better to either consider a
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statistical distance between distributions or to calculate the Bayes factor and perform

a Bayesian hypothesis test in a formal sense.

3.3 Distance Metrics

Distance metrics are commonly used in a deterministic setting, as they provide

a clear and interpretable method of validating a simulator. When considering

probabilistic outputs, namely comparing two distributions as in Fig. 3.1, there are

several distances/divergences that could be employed. The following sections discuss

two families of probabilistic distance metrics: f -divergences and Integral Probability

Metric (IPM)s.

3.3.1 f-Divergences

The class of distances/divergences that depend on a ratio between probability

measures are known as Csiszár’s φ-divergences or f -divergences. These measures are

of the form defined in Eq. (3.11).

Dφ (P,Q) =

∫
M

φ

(
dP
dQ

)
dP (3.11)

Where M is a measurable space and φ is a convex function. Equation (3.11) holds

when P is absolutely continuous with respect to Q and −∞ otherwise. Different

forms of the f -divergence depend on the choice of function φ with notable cases

being the Kullback-Leibler (KL) divergence, φ(t) = t log(t), Hellinger distance,

φ(t) =
(√

t− 1
)2

, and total variation distance, φ(t) = |t − 1|. This family of

divergence measures is widely used throughout information theory and machine

learning.

Kullback-Leibler Divergence

The KL-divergence is the most widely used f -divergence and has many applications.

A notable example is in performing variational inference as it is a natural formulation

of the ratio between two likelihood functions [56]. The KL-divergence of probability
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measures P and Q is shown in Eq. (3.12).

DKL (P,Q) = KL(P||Q) =

∫
p(x) log

(
p(x)

q(x)

)
dx (3.12)

Where p(x) and q(x) are probability distributions of the random variable x. The

KL-divergence is a measure of relative entropy [57] taking the units nats, or bits

depending on the base of the logarithm, exponential or two respectively. The

divergence informs of the average number of extra nats (or bits) required to encode

the data given that the distribution Q is used to model the ‘true’ distribution P.

This can be thought of as how well Q approximates P. The KL-divergence can be

difficult to estimate and often proves challenging when the dimension size of samples

increases (i.e. in the instants where d increases when M = Rd). On the other hand

the divergence can be practical to compute between low-dimensional probability

density functions and therefore is useful when the observational density function is

known or can be accurately approximated.

The KL-divergence is not a metric as it does not meet two of the four requirements: it

is neither symmetric nor obeys the triangle inequality. A smoothed and symmetrised

form of the KL-divergence is the Jenson-Shannon divergence [58], which by taking

the square root becomes a metric, known as the Jenson-Shannon distance defined in

Eq. (3.13).

DJSD (P,Q) =

√
1

2
DKL (P,M) +

1

2
DKL (Q,M) (3.13)

Where M = 1
2

(P + Q) and is the midpoint. This will always produce a finite result,

unlike the KL-divergence as P and Q are always absolutely continuous with respect

to M. The computational overheads of the Jenson-Shannon distance are high due to

the mixture distribution M, which becomes prohibitive in high dimensional data. In

addition it is less sensitive to scenarios when distribution Q contains sample values

that are impossible in P, unlike the KL-divergence.

Empirical estimation of the KL-divergence in a non-parametric manner for continuous

distributions can be approximated using several approaches [59, 60]. Here a non-

parametric estimation method based on data-dependent partitions is used; which

has been shown to be strongly consistent [59]. For the unidimensional case, assume
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Figure 3.4: Estimation of KL-divergence using data-dependent partitions where
P ∼ N (0, 1) and Q ∼ N (1, 1). DKL (P,Q) = 0.5.

i.i.d. samples from probability measures P and Q; X = {x1, x2, . . . xm} and Y =

{y1, y2, . . . yn}. The algorithm orders Y so that Y(1) ≤ Y(2) ≤ . . . Y(n), where Y(i)

refers to the ith index of Y . A partition of empirically equivalent segments divides

Y , called ln spacings, as defined in Eq. (3.14), with ln points in each interval (expect

possibly the final one).

In = {(−∞, Y(ln)], (Y(ln), Y(2ln)], . . . , (Y(ln(Tn−1)),+∞)} (3.14)

Where brackets have interval notation meaning, ln ≤ n and Tn = bn/lnc. The

empirical estimate of the KL-divergence can then be calculated from Eq. (3.15).

D̂KL (P,Q) =
Tn∑
i=1

Pm(Ini ) log
Pm(Ini )

Qn(Ini )
(3.15)

Where Pm and Qm are empirical probability measures. This can easily be adapted to

multidimensional data. As the number of samples and partitions increase D̂KL (P,Q)

approaches DKL (P,Q) [59].
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Figure 3.4 presents a convergence study of the empirical estimator for unidimensional

samples drawn from two Gaussian distributions, P ∼ N (0, 1) and Q ∼ N (1, 1). 500

repeats were performed at each sample size in order to demonstrate the variance of

the estimator. It is clearly presented that although the estimator will converge, this

can be slow and requires a large sample size. In most engineering applications it is

often not possible to obtain even hundreds of samples at each input indicating a

drawback with the estimator.

Hellinger Distance

The Hellinger distance is analogous to the Euclidean distance for probability measures

as it is an L2 norm, defined in Eq. (3.16).

DH (P,Q) =

√
1

2

∫ (√
p(x)−

√
q(x)

)2

dx (3.16)

Hellinger distance is a metric meeting all four requirements as well as having the

property that DH (P,Q) ≤ 1. This provides an intuitive interpretation of the distance

where values close to zero mean very similar probability measures and a distance

close to one indicates very dissimilar probability measures.

Total Variation

Total variation distance is the L1-norm equivalent to the Hellinger distance and is

defined in Eq. (3.17).

DTV (P,Q) =

√
1

2

∫
|p(x)− q(x)|dx (3.17)

This is the only distance measure that can be classed as both an f -divergence and

IPM (discussed in Section 3.3.2) [61]. In IPM form, total variation is written as

Eq. (3.18).

D2
TV (P,Q) = sup

||f ||∞≤1

|p(x)− q(x)| (3.18)
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Total variation distance, like the Hellinger distance, takes values in [0, 1] aiding

interpretability and objectivity across applications.

3.3.2 Integral Probability Metrics

IPMs differ from f -divergences as they depend on the difference rather than ratio of

probability measures. These measures are defined as in Eq. (3.19).

DF (P,Q) = sup
f∈F

∣∣∣∣∫
M

fdP−
∫
M

fdQ
∣∣∣∣ (3.19)

Where F is a class of functions on M . The choice of F leads to various IPMs, such

as the total variation distance where F = {f : ‖f‖∞ ≤ 1}, the Kolmogorov distance

where F = {1(−∞,t] : t ∈ Rd}, MMD where F = {f : ‖f‖H ≤ 1} (i.e. all f that are

RKHS, H) and the Wasserstein distance where F = {f : ||f ||L ≤ 1} where L here

refers to Lipschitz functions.

Kolmogorov Distance

The Kolmogorov distance is closely related to the total variation distance, involving

CDFs as stated in Eq. (3.1). If the probability function is non-decreasing then total

variation will provide the same solution as the Kolmogorov distance. Furthermore

total variation is an upper bound on the Kolmogorov distance i.e. DK (P,Q) ≤
DTV (P,Q).

Maximum Mean Discrepancy Distance

As stated in Eq. (3.2), MMD is the difference between mean embeddings in a RKHS

of two finite sample sets. MMD is a non-parametric technique meaning that the

form of the distribution does not need to be known before estimation.

Area Metric

The area metric, proposed by Ferson et al. [62], is a popular validation metric in

engineering for assessing the difference between two distributions [40, 63–65]. The
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Figure 3.5: An example of the area metric (the shaded region) between P = N (0, 0.82)
and 20 samples from Q = T (5) where DArea (P,Q) = 0.64.

area metric is the area of the L1-norm between two CDFs, defined by Eq. (3.20) and

illustrated in Fig. 3.5.

DArea (P,Q) =

∫
|FP (x)− FQ (x) |dx (3.20)

The metric is also the distance between quantile functions (inverse CDF) i.e.
∫
|F−1
P (p)−

F−1
Q (p) |dp where p is a probability. This means that the metric is part of the Wasser-

stein (or Kantorovich) distances. The metric is part of a family of metrics, known as

the Lp metrics, where the Lp-norm is taken rather than L1.

Oberkampf and Roy state that a significant merit of the area metric is that the

units are that of the quantity in question, i.e. if the random variable X were an

observation of stress in MPa then the area metric too is in MPa, since probability is

dimensionless [40]. The distance therefore scales with the units of observed quantity.
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3.4 Maximum Mean Discrepancy Witness Func-

tion

MMD, defined in Eq. (3.2), provides an additional benefit in that the kernel embedding

can be applied over a variable t, in order to visualise the behaviour of the RKHS

embeddings, producing the witness function, f ∗. An empirical estimation of the

witness function, outlined in Eq. (3.21), can be formed to provide a method for

visually determining the dissimilarities between two distributions.

f ∗(t) ∝ 1

m

m∑
i=1

k (xi, t)−
1

n

n∑
i=1

k (yi, t) (3.21)

The witness function intuitively is zero where the two distributions are the same,

positive when P is larger and negative when Q is greater, as far as the smoothness

constraint allows. The example in Fig. 3.6 demonstrates the information gained from

calculating the witness function. A radial basis kernel is used with σ = 0.85.

The witness function can be implemented as a validation tool, where the differences

help diagnose model inadequacies. For example, if in Fig. 3.6 X are simulator

predictions and Y observations, it can be easily identified that more probability mass

is located around zero from the sample set Y than is modelled by X ; this is indicated

by negative values in the witness function. In addition, X has more probability

mass in both tails, indicated by the positive values in the witness function. A near

symmetric witness function informs that the mean predictions are very similar. The

witness function in this example would diagnose a conservative simulator output,

where a distribution with a steeper probability mass decay from the mode would

improve the prediction. In this one dimensional case this information may appear

obvious, however this will not always be the case in more complex and bespoke

distributions. Furthermore, in higher dimensional spaces it becomes challenging

to compare two Probability Density Function (PDF)s and a witness function will

provide a low dimensional interpretable diagnostic.
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Figure 3.6: An example of a witness function between 10000 samples from X ∼ T (8)
and Y ∼ L (0, 0.71), DMMDu = DMMDb = 0.11. Where L (·, ·) and T (·) are Laplace
and Student’s t distributions. Panel (a) are the PDFs of the distributions from which
the finite samples are drawn and panel (b) are the mean kernel embeddings of the
two samples and the witness function over a space t.

3.5 Numerical Examples

The frequentist hypothesis tests outlined in Sections 3.2.1 and 3.2.2 both rely on the

sensitivity of the test statistic to changes in the distribution to determine statistical

significance. This means that by assessing the distance metrics that form these

test statistics, the effectiveness of the hypothesis test can be inferred. Additionally,

Bayesian hypothesis tests make most practical sense when realistic hypotheses

are formed. For these reasons hypothesis tests are not compared in the following

numerical examples, but will be discussed and applied throughout the thesis. Instead

the following numerical examples seek to assess the performance of the outlined

distance/divergence measures.

In order to compare the statistical distances specified in Section 3.3 several numerical

examples are considered. Continuous distributions with known mathematical forms

are studied in order to analyse the behaviours of the distances in difference contexts.

Practically most real scenarios will involve both sampled or one known distribution,

meaning that approximators, such as a Kernel Density Estimate (KDE) or other

non-parametric formulations may be used. In order to keep comparisons between

distances consistent, numerical integration is implemented to calculate each distance.

It is noted however that for certain known distributions it is possible to solve some
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distances/divergences in closed form.

The first example seeks to determine how the distances are affected by lower order

moments, specifically in the context of a Gaussian distribution. Figure 3.7 shows

the distance between P ∼ N (0, 1) and Q ∼ N (µx, σ
2
x). The first case is when the

mean µx is varied and the variance σ2
x is fixed, the second case considers the mean

µx fixed and the standard deviation σx variable.

For the first case, where a change in mean is considered, the KL-divergence becomes

symmetric (i.e. DKL (P,Q) = DKL (Q,P)) and rapidly increases indicating sensitivity

to change in the mean. On the other hand, the KL-divergence is slow to increase

initially and may struggle to detect small variations in the mean. The convex shape

of the KL-divergences demonstrates why it is widely used for optimisation purposes.

In contrast the area metric tracks with the distance between the two distribution

means i.e. when µx = 2, DArea (P,Q) = 2. Comparing the distance metrics bounded

[0 1] — the Hellinger, total variation and Kolmogorov distances — illustrates that

total variation distance is the most sensitive to the change in mean, followed by

Kolmogorov and Hellinger distances. With the knowledge that these have an upper

bound of 1, the distances become quite far relatively quickly, i.e. when µx = 2

total variation is 0.83 compared with 0.68 and 0.62 for the Kolmogorov and the

Hellinger distance. For this scenario the distances can be interpreted as far away

and would lead to an acknowledgement of significant inadequacy in the relationship

between the simulator and observations. It is argued that these distances give a

better indication of the relative difference between the distributions providing an

objective comparison when compared with the KL-divergence and area metric. The

MMD distances do not have an upper bound but track relatively consistently with

both the Kolmogorov distance and Hellinger distances. It is noted that the MMD’s

non-parametric, sample based, approximation of the distributions leads to oscillations

in the metrics. Additionally, both bias and unbiased results are very similar and

become less sensitive to changes in the mean ≥ 4 and ≤ −4 when compared with

the Kolmogorov and Hellinger distances.

The second scenario, when the variance is varied, demonstrates the asymmetric

nature of the KL-divergence where more nats of information are required in order

to encode Q when P is the model distribution than in the opposing case. This is

because when the proposed model distribution has little or no probability mass

in areas where the target distribution is expected to have probability mass, more

information would required to replicate the target distribution. However, when there
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Figure 3.7: A comparison of probabilistic distances/divergences for two Gaussian
distributions, P ∼ N (0, 1) and Q ∼ N (µx, σ

2
x). Panel (a) and (b) demonstrate the

distances/divergences when the mean µx is varied from [-6 6] with a fixed variance
σ2
x = 1. Panels (c) and (d) present the distances/divergences when the standard

deviation σx is varied from [0 6] with a fixed mean µx = 0. Panels (b) and (d) show
the distances with y-axis limits [0 1]. It is noted that the KL-divergence units are
nats and the area metric is in the units of x (in this case non-dimensional), although
all distances are plot on the same axes for visualisation purposes. The MMD distance
is calculated from 2000 samples and all other distances from numerical integration
over the range [-30 30] in 0.01 steps.
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is a broad spread of probability mass in the model distribution, covering all areas

of high probability mass in the target distribution, less information is needed to

encode the target distribution. This means that the KL-divergence will often favour

conservative model distributions, useful for a validation setting. Unfortunately the

units of the KL-divergence are difficult to intuitively interpret. The area metric

linearly scales with a change in variance implying it is less sensitive to this change

than the other distances/divergences. Nonetheless the area metric is valuable as

the units are the same as the quantity of interest. Furthermore, the area metric

appears almost symmetric about the variance of P, suggesting the area metric suffers

to differentiate between under- and over-estimations of the variance; an unhelpful

property in validation. In comparison total variation, Hellinger and Kolmogorov

distances appear more sensitive to underestimation of the variance, indicated by a

steeper gradient of distances below a standard deviation of 1. In conjunction with

the previous findings total variation is more sensitive to changes in the standard

deviation than the Hellinger or Kolmogorov distances. Here the Kolmogorov distance

becomes less sensitive than the Hellinger distance, this is due to the fact that the

Kolmogorov distance is less sensitive to changes in the tails, compared to difference in

the central probability mass. Again both MMD distances track in a similar manner

to the Hellinger distance.

The next examples presented in Tables 3.1 and 3.2 compare the statistical distances

for different forms of distribution. The first two examples compare standard Gaussian

and Laplace distributions (with the same mean and variance) as well as standard

Gaussian and Student’s t distributions, where small dissimilarities are visually

shown in Fig. 3.8. For these two examples the KL-divergences (in both directions)

indicate that relatively small amounts of information are required to encode the

‘true’ distribution, from the low KL-divergences given the log ratio relationship. The

Kolmogorov distance shows very small distances, expected given its insensitivity to

differences away from the central probability mass. The MMD distances, both biased

and unbiased, produce comparable results calculating larger distances for the Laplace

than the Student’s t distributions. The Hellinger and total variation distance also

evidence that the standard Gaussian is closer to the Student’s t distribution than

the Laplace distribution, but by a relatively smaller amount. Again the Hellinger

distance produces smaller distances than total variance; this is an expected result

given that total variation is an upper bound to the Hellinger distance. The two area

metrics for these examples are the same. This demonstrates a failure to capture the

knowledge that a Student’s t is expected to be closer to the standard normal than a
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P Q DKL (P,Q) DKL (Q,P) DH (P,Q) DTV (P,Q)
N (0, 1) L (0, 0.71) 0.07 0.23 0.16 0.34
N (0, 1) T (5) 0.03 0.12 0.11 0.25
G (2, 1) N (1, 1) - ∞ 0.38 0.50
U (−4, 4) N (0, 1) - ∞ 0.46 0.70

Table 3.1: Examples of f -divergences for different distributions. Numerically inte-
grated over the range [-30 30] in 0.01 steps. KL-divergences are in nats.

P Q DK (P,Q) DMMDu (P,Q) DMMDb (P,Q) DArea (P,Q)
N (0, 1) L (0, 0.71) 0.06 0.12 0.12 0.15
N (0, 1) T (5) 0.03 0.04 0.05 0.15
G (2, 1) N (1, 1) 0.25 0.26 0.26 1.00
U (−4, 4) N (0, 1) 0.25 0.44 0.44 1.20

Table 3.2: Examples of IPM distances for different distributions. Numerically
integrated over the range [-30 30] in 0.01 steps apart from the MMD distances which
are estimated from 2000 samples.

Laplace distribution.

The KL-divergence for the next two examples, a comparison of Gamma and Gaussian

distributions and uniform and Gaussian distributions, presents issues with using

numerical integration, but provides informative results. As the Gamma distribution

contains no probability mass below zero it is logical for it to be impossible for a

Gaussian distribution, that has symmetric probability mass over −∞ to ∞ range, to

ever be be able to replicate the Gamma distribution, given any amount of additional

information. In contrast a Gamma distribution would require an infinite amount

of additional information below zero to replicate the Gaussian distribution. The

KL-divergence, calculated in this manner, is extremely informative in diagnosing

these issues. Similar problems also exist in the comparison of a uniform and Gaussian

distributions, where a uniform distribution contains no probability mass outside of

its range. The Kolmogorov distances for these examples are the same, contributing

more evidence of issues with the distance when differences are outside the central

probability mass. Moreover, the total variation, Hellinger and MMD distances,

including the area metric, all evidence that the uniform and Gaussian distribution

distances are further than the Gamma and Gaussian distribution. Once more the

total variation is more sensitive than the Hellinger distance to difference in the

distributions with the MMD distances being most similar to the Hellinger distance.

The results from empirical numerical observations indicate the strength and weak-



3.5. NUMERICAL EXAMPLES 51

-4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Figure 3.8: Distributions used in the comparison of distance/divergences.

nesses of the distances/divergences considered. It can be summarised that the

KL-divergence becomes very sensitive in scenarios where large amounts of extra

information are required to replicate the ‘true’ distribution, and its convex nature

makes it ideal for optimisation settings. This makes the divergence useful for sce-

narios when the question of whether to obtain more observations or simulator runs

to solve issues of inadequacy are asked. In the event of a particularly large (or

even ∞) divergence it can be inferred that the proposed model distribution form

is not appropriate. The major drawback of the KL-divergence is that outside of

these extremes it is not easily interpretable. The Kolmogorov distance is flawed as a

general distribution validation metric for the aforementioned reasons, and it is not

recommended as the sole qualification of the distance between distributions. The

total variation and Hellinger distances can arguably be seen are more interpretable

and objective in comparing two distributions given that 0 indicates they are the same

and 1 that the distributions are as far as possible. Total variation is more sensitive

than Hellinger and may be more sensitive than required for engineer validation

applications. The Hellinger distance, in the author’s opinion, seems more intuitive

given the results in Table 3.1. Furthermore, the MMD distances tend to provide

similar distances to the Hellinger and may be practical in a variety of settings due

to its non-parametric formulation. However for small sample sizes it will be more

dependent on kernel and hyperparameter choices adding a level of modeller input

that may be unwanted — although calculation of the median heuristic removes a
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level of subjectivity. Lastly, the area metric, although in the units of the quantity of

interest, is relatively hard to objectively interpret. The area metric also displayed

potential problems with not differentiating between under- and over-estimation of

the variance for these numerical examples, often problematic when conservative

results are required. It is noted that all the examples considered here have been for

univariate distributions. Different conclusion may be found with higher-dimensional

distributions in line with the findings of Aggarwal et al. where fractional norms

increase sensitivity for high-dimensional non-statistical distances [66].

3.6 Conclusion

Validation is an important aspect of forward model-driven SHM which needs to

be addressed before methods can be proposed. The objective of validation within

forward model-driven SHM is to assess whether the predicted simulator distributions

can be considered statistically similar to the observed distributions of damage states.

In order to assess the inadequacy of simulators, given the target objective, a validation

strategy has been proposed.

The proposed validation strategy implemented throughout this thesis begins with

hypothesis testing. In a frequentist setting this will state whether there is statistical

significance to reject the hypothesis that the simulator and observation damage

state distributions are the same. In a Bayesian setting multiple hypotheses, set as

multiple modelling approaches, can be compared in order to determine the ratio of

posterior odds (or the Bayes factor). This approach means that the probability of a

particular hypothesis can be determined and links into the problem model selection.

The second stage of the strategy is to quantify the difference between two probability

distributions using statistical distances. This provides a more informative measure

of the simulator inadequacy. Thirdly, visual diagnostics such as the MMD witness

function can be used to interpret the sources of these differences. Finally, if required,

deterministic metrics such as residuals or Mean Squared Error (MSE) could be

quantified.

Statistical distances have been compared using numerical examples. These case

studies have led to the conclusion that the Kolmogorov distance is often insensitive

to differences outside the central probability mass, making it impractical for some

validation contexts. The KL-divergence will often be difficult to interpret, but can
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provide useful information in diagnosing problems where significant differences (or

impossibilities) in the probability mass are present. Both total variation and Hellinger

distances show a good level of sensitivity to differences in distributions, with the

total variation being more sensitive. In spite of this, it is the author’s opinion

that the Hellinger distance could be a more intuitive validation metric. The MMD

distances produced similar distances to the Hellinger distance for these numerical

example, meaning that it could be an informative and stable method for providing a

non-parametric distance between samples. Finally, the area metric is useful in that it

quantifies the distance in terms the quantity of interest units. Despite this the metric

can be hard to objectively compare. Furthermore, it appears to fail to distinguish

between under- and over-estimation of the variance. It is therefore suggested that for

most validation applications a combination of the KL-divergence, area metric and

either the total variation, Hellinger or MMD distances would be effective in assessing

the simulator’s adequacy.





Chapter 4

Emulators

Simulators are widely utilised throughout engineering to simulate behaviours of com-

plex systems, with common methods being FEA, CFD and multi-physics techniques.

The development of a simulator is often for a set of specific tasks, such as design space

exploration, analysis or prediction. Increasingly simulators are being analysed using

statistical methods e.g. [67–72] or used in optimisation routines e.g. [73–77], with

both categories often requiring numerous simulator evaluations. This poses potential

challenges as simulators are often computationally expensive, and for a set of inputs

and parameters, outputs are unknown until the simulator is run. These challenges

are common to forward model-driven SHM which employs simulators and statistical

methods in order to produce health state outputs that are statistically representative

of real world observations. Consequently for many optimisation or statistical methods

to be practically applied to simulators emulators must be constructed. An emulator,

surrogate model or meta-model, is a computationally efficient representation of the

input-output mapping from a simulator, allowing fast evaluations in problems that

require multiple runs of a simulator — with the drawback being that the simulator

is approximated. To the author’s knowledge the earliest example of constructing an

emulator is Sacks et al. in 1989 [78, 79] where GP models were implemented.

The following chapter outlines the variety of approaches for constructing emulators

with a discussion on why, in the author’s opinion, for the majority of applications the

most rigorous approaches are those based on GP technologies. A detailed overview

of GP emulators is provided, examining the mathematics, implementation procedure,

diagnostics and validation process. Additionally, techniques for efficiently emulating

55
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large parameter spaces are demonstrated. Finally, additional extensions to GPs for

a variety of emulation contexts are discussed.

4.1 Emulator Types

Simulators can be regarded as some functional mapping from a set of inputs x

and parameters θ to a set of outputs y, η : {x,θ} → y. This functional mapping,

although based on mathematical equations, can often be considered mathematically

intractable due to its complexity. This means that the function is treated as unknown,

i.e. for a set of inputs and parameters, outputs are unknown until the simulator is

run. In engineering problems deterministic simulators are most common, meaning

that for a given set of inputs there will be a unique output, i.e. y(x) = η(x,θ). As

a result, constructing a non-intrusive emulator η̂, of a simulator is akin to that of

regression, whereby an unknown functional mapping is approximated given a set

of input-output data, D. The data set D for building an emulator is a finite set of

simulator runs. Thus, techniques for performing regression have been adopted for the

purpose of emulation. There are several well established regression technologies that

have been employed in constructing emulators, namely ANNs, Polynomial Chaos

Expansion (PCE), Bayes Linear Analysis (BLA) and GPs. Section 4.1 proceeds

with considering scenarios where parameters are removed from the problem, i.e.

y(x) = η(x) ≈ η̂(x), for simplicity of the discussion.

ANNs are a group of machine learning algorithms which aim to learn input-output

mappings using combinations of computational units called neurons [26]. Each

neuron takes a set of inputs, multiples these by a set of weights (and potentially adds

bias terms) before applying a nonlinear activation function (popular choices being

logistic or hyperbolic tangent functions) to generate the neuron’s output. Neurons

(or nodes) are structured given a topology. An ANN begins and ends with the inputs

and outputs known as layers, for whom their size is determined by the inputs and

outputs dimensionality. A topology specifies the number and size of hidden layers,

intermediate stages between the input and output layers, including the connectivity

of each node. The weights and bias terms for each node are grouped as the network

parameters and are learnt in the training stage via minimisation of a loss function.

This optimisation is usually performed using a form of gradient descent where the

derivatives are calculated by back-propagation [26]. By specifying different topologies
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an ANN should be able to capture any arbitrary function, given enough input-output

data. On the other hand, an inappropriate topology can lead to overfitting [74], for

example where the number of nodes in a hidden layer is very large. Additionally, to

avoid overfitting model complexity must be regulated [73], which is often achieved

by regularising the loss function or the addition of input noise [80].

ANNs have been employed as emulators in a variety of applications, examples being

water management models [81, 82], aerodynamic CFD models [74], FEA models of

crashworthiness [75] and structural damage [83] in addition to surrogate models of

cost functions [76]. Frequently ANN emulators have been successfully utilised as

part of optimisation tasks, generally within a deterministic framework [73–76, 81–83].

Several issues arise when using ANN emulators. Fitting topologies is a challenging

but vital task in implementing ANNs, with a common approach being the trial and

error method [75, 76, 82], however more advanced solutions have been developed,

such as the NeuroEvolution of Augmenting Topologies (NEAT) method, that uses

a Genetic Algorithm (GA) to learn optimal topologies of ANNs [84]. This process

is time consuming, especially when employing the trial and error method which in

addition requires a large amount of modeller input. Furthermore, ANNs produce

a bias that is unpredictable [76], i.e. given a new set of input points it is unclear

whether the emulator will over- or underestimate the functional response. ANNs

are non-interpolating and consequently are not guaranteed to learn the underlying

functional form. This is concerning in optimisation problems where ANN emulators

can produce false maxima or minima [73, 81], with no indication of bias or whether

the solution has overfit — leading to suboptimal parameter selection. Moreover, due

to the problem of overfitting, an ANN requires cross-validation — involving dividing

a data set into two sets, where one set is used to train and the other to validate

the analysis. This process also increases the time cost in learning an ANN reflected

in a paper by Broad et al. where training the ANN emulator alone took 16 hours

compared to the 21 hours in performing the full optimisation task with the simulator

[81].

Recently Deep Neural Networks (DNN)s have been implemented as emulators [72] for

applications involving a large amount of training data where the curse of dimension-

ality — adding an extra dimension leads to an exponential increase in the functional

input space, requiring a large increase in training data [26] — is problematic. Deep

defines an ANN with numerous hidden layers, with development of DNNs improving

problems with the curse of dimensionality by providing multiple layers of feature
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extraction from the data. Nonetheless many of the issues associated with ANNs are

still present in DNNs, such as overfitting and cross-validation of network topologies.

Additionally, DNNs suffer from the problem of vanishing gradients, where the gra-

dient of the loss function becomes vanishingly small, leading to weights that are

updated by a negligible or zero term, which in turn leads to difficulties in training.

PCE is a methodology that can be applied to approximate the outputs of a simulator

using finite series expansions. The approach can be implemented in an intrusive

or non-intrusive manner for learning a set of unknown deterministic coefficients aj.

Access to the mathematical equations is required for intrusive PCE, as algebraic

manipulations must be performed, meaning each implementation is complex and

bespoke. This would require simultaneous development of both simulator and

emulator. The aforementioned definition of a simulator, that it can be treated

as intractable and therefore as a black box, in addition to the desire for a general

emulation tool, means that intrusive PCE is excluded from this discussion of emulator

types. Non-intrusive PCE therefore fits within the definitions as the approach uses

evaluations of the simulator in order to infer aj and can be directly compared with

other emulator techniques.

Non-intrusive PCE assumes that the inputs are uncertain, represented as random

variables X with joint PDF fX (x) resulting from marginally independent PDF’s (a

decorrelation step would be required if the output is also dependent on parameters

[85]). Subsequently, assuming the uncertain outputs Y are a second-order stationary

process, an expansion onto orthogonal polynomial bases is possible, as presented in

Eq. (4.1).

Y ≡ η(X ) ≈
p∑
j=0

ajψj(X ) (4.1)

Where ψj(X ) are specified multivariate polynomials that are completely dependant

on the elicited joint PDF form of X (based on orthogonal properties), and p is the

number of polynomials. If p were infinite then the expansion would be equivalent to Y ,

however practical implementation reduces this to a finite set of degrees not exceeding

p. Examples of polynomial bases are the Legendre and Hermite polynomials, utilised

when the input distribution form is uniform or Gaussian.

The coefficients aj , can be determined non-intrusively using a variety of techniques, e.g.
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a least squares regression or a quadrature approach (also known as the projection

method) and once estimated the PCE emulator can be used to infer simulator

outputs at new input locations. It has been shown that regression approaches

lead to worse interpolation performance than quadrature methods [85]. In addition

for situations with small sample sizes it has been recommended that twice over-

determined regression should be used rather than uniquely-determined [86]. In

comparison, quadrature methods involve solving complex integrals and as dimensions

increase these become impractical due to the curse of dimensionality [87]. At this

point computationally expensive sampling techniques may be used in order to estimate

aj . Challenges also remain, like in polynomial regression, in selecting the appropriate

number of polynomials p. Normally the modeller will increase p until the new

coefficients are small, and the approximation order large enough to provide adequate

results. As PCE requires learning coefficients of orthogonal polynomials, overfitting

becomes a problem, with cross validation methods required to increase generality

outside the training data. Moreover, although error bounds on the approximation

are available in some circumstances and estimates of the mean and variance of Y

can be calculated, PCE provides no quantification of the uncertainty introduced by

implementing the emulator [87], also known as code uncertainty. This means there

is no clear mechanism in PCE formulations for expressing where the surrogate will

perform poorly due to it being an approximation.

The use of PCE is most prevalent in the applied mathematics communities [87] with

examples being soil foundation FEA [35], CFD [86, 88], probability of failure [89],

fluid processes [36, 90], environmental systems [85], building performance [91] and

structural mechanics [92] simulators. Predominantly PCE has been implemented

in Uncertainty Propagation (UP) [85, 86, 88, 89, 92] and sensitivity analysis tasks

[35, 36, 91]. Problems with generality, when PCE is applied to different input

domains, are indicated in [91], displaying the issue of overfitting.

BLA provides a framework for performing analysis on problems too complex for

standard Bayesian tools, pioneered by Goldstein and Wooff [93]. The approach

updates simulator beliefs systematically using observational data via linear fitting;

keeping the same form as Bayesian methods except dealing only with expectations,

variances and covariances rather than probabilities. BLA supposes that there is some

variable of interest B that we wish to infer given some other measured variable D .

By specifying E (B), E (D), V (B), V (D), cov (B ,D) and measuring D , it is possible

to update the expectation and variance of B as shown in Eqs. (4.2) and (4.3). It is
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noted that if all the prior quantities are specified as Gaussian then the BLA and full

Bayesian solutions generate similar updating equations [94].

ED (B) = E (B) + cov (B ,D)V (D)−1 (D − E (D)) (4.2)

VD (B) = V (B)− cov (B ,D)V (D)−1cov (D ,B) (4.3)

It is typical in emulation using BLA to assume a prior functional form similar to

that of Eq. (4.4).

y(X) = Hβ + u(X) (4.4)

Where H is a design matrix constructed from basis functions, β are regression

coefficients and u(X) is a discrepancy term from the basis fit. Priors in the forms of

means and variances are then defined for the regression coefficients β. The prior for

the basis fit discrepancy term u(X) is usually zero mean with a specified covariance

structure, e.g. Eq. (4.5) [94]. The prior beliefs about the functional form can be

formulated into a mean and covariance in Eqs. (4.6) and (4.7).

cov (u(X) , u(X ′)) = σ2
u exp

(
−θu (X −X ′)T (X −X ′)

)
(4.5)

µ(X) = E (η(X)) = HE (β) (4.6)

κ(X,X ′) = cov (η(X) , η(X ′)) = cov (H(β) , H(β)) + cov (u(X) , u(X ′)) (4.7)

The emulator mean and variance are then updated via Eqs. (4.2) and (4.3) using

observed simulator outputs (i.e. D = y). This generates the best linear fit for the

emulator given a set of simulator runs, minimising the expected squared error loss.

Furthermore, the variance in BLA provides a quantification of code uncertainty.

The key motives for applying BLA emulators are, that the distributional assumption
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for the simulator outputs is unclear, and that a fully Bayesian analysis would produce

computational complexities. Applications of BLA as emulators are fewer than the

other emulator types with notable examples being in hydrocarbon reservoir pressures

[67, 95], climate [70], galaxy formation [94, 96] and gas modelling [97, 98].

GP regression is a tractable Bayesian interpolation technique that is both a flexible

and non-parametric method for inferring unknown functions from input-output data

[27, 99]. A GP, a generalisation of the multivariate Gaussian distribution, can be

considered a prior over functions, whereby inference is made in order to determine

functions that were likely to have produced the output data. This means that a

GP is the assumption that a finite set of variables are jointly Gaussian distributed.

The Gaussian nature of the GP means that full Bayesian analysis remains tractable

providing predictive equations for the expectation and variance in closed form (and

therefore the full output PDF). All that is required to specify a GP are mean and

covariance functions m(·) and k(·, ·) respectively; which state the modellers prior

belief about the functional family that the simulator function may have been drawn

from, presented in Eq. (4.8).

η(x) ∼ GP (m(X) , k(X,X ′)) = N (m(X), k(X,X ′)) (4.8)

The Bayesian framework also provides protection against overfitting, having been

demonstrated to have Occam’s Razor (the selection of the minimally complex model)

at work [18]. Full mathematical definitions are deferred to Section 4.2. It is noted that

GPs and the term kriging are mathematically identical, with the kriging definition

arising from low dimension geospatial applications [100].

The popularity of GP emulators in the statistics community reflects the rigorous

statistical nature of the technique, with a tutorial by O’Hagan to help spread their

uptake within engineering contexts [101]. Originally utilised by Sacks et al. [78, 79],

GPs have been used in numerous applications with examples being chemical [68, 79],

electronics [78, 102], spot weld [69], explosions in a cylinders [103], ecosystem [104],

engineering design [77, 105, 106], climate [107, 108], disease [71, 109, 110] and

dynamics [52, 55] simulators. In addition, GP models have been applied to outputs

from non-smooth functions showing their applicability to a wide variety of simulators

[111, 112].

It is clear from the aforementioned definitions and applications that both ANNs and
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PCE have several shortcomings in their application as emulators. Firstly, ANNs

and PCE have no mechanism for quantifying code uncertainty. As a consequence,

the methods (in the forms commonly utilised in emulation) cannot inform the

modeller of instances where the emulator is being utilised outside of the original

training data. This may have severe implications as the modeller will be unaware

of poor emulation, leading to suboptimal optimisation/calibration or unrealistic

uncertainty propagation. In contrast BLA and GPs provide estimates of code

uncertainty, which when incorporated into the statistical or optimisation method can

provide resilience of the output to poor emulation, or even lead to opportunities for

retraining and improving the emulator. It is argued that even when simulators are

deterministic, probabilistic approaches will provide more robust outcomes. Secondly,

ANNs and PCE can overfit if cross-validation strategies are not applied correctly,

adding additional computational cost. On the other hand, GPs by construction have

a built in mechanism for selecting the best, minimally complex model given the

training observations, which in most contexts removes the need for cross validation.

In addition, PCE and BLA are approximation methods, with PCE requiring a

truncation level and BLA being a best linear estimate of a full Bayesian analysis. An

ANN can also be considered an approximation, as an ANN with Gaussian priors on

the weights will tend to a GP as the number of nodes in a hidden layer approaches

infinity [113]. On the contrary, GPs are not an approximation and, as full Bayesian

analysis, lead to an elegant closed form solution when the outputs are considered

correlated and Gaussian. There may be instances where GPs may not be optimal, as

when the output distribution cannot be assumed Gaussian, in these cases BLA may

be preferred. However, in situations where the outputs are assumed Gaussian, GPs

will be a more rigorous approach, with better representations of code uncertainty. In

summary it is the author’s opinion that for most applications GPs provide the most

rigorous methodology for generating emulators and are the preferred emulator type

in this thesis.

4.2 Gaussian Process Emulators

A simulator can be represented by an underlying functional mapping η(·) between

a set of inputs X and their corresponding outputs Y , i.e. Y = η(X). It may be

possible to run the simulator at any arbitrary set of inputs, however to evaluate all

the combinations of interest is assumed to be computationally expensive; for this



4.2. GAUSSIAN PROCESS EMULATORS 63

reason only a finite set of N simulator runs are often available. The objective of

creating a GP emulator is to reproduce the functional mapping, via regression, so that

predictions of the outputs can be made given new inputs. The probabilistic framework

means that the mapping between a set of N inputs X = {xn}Nn=1 of dimension D

and their corresponding N outputs y = {yn}Nn=1 is modelled as p (y |η, X,φ); where

φ is a small set of hyperparameters (parameters of a prior distribution) and η are

a vector of simulator output evaluations. For a GP emulator the latent function η

can be modelled with a GP prior, this is based on the assumption that simulator

outputs for different inputs can be modelled as jointly Gaussian distributed. The

GP prior is formulated as presented in Eq. (4.9).

p (η |X,φ) ∼ N (m, K) (4.9)

Wherem, the mean function, is linear in the parameters as demonstrated in Eq. (4.10)

and K is the covariance function in Eq. (4.12).

m = m(X) = Hβ (4.10)

The design matrix H is comprised of p basis functions, H = (h1(·), . . . , hp(·)) applied

to X, with p corresponding coefficients in the vector β = (β1, . . . , βp)
T. The basis

functions used to construct H should reflect the prior beliefs about η, as they form

the assumption that η can be approximated by a function contained within the

design matrix. It is common for a constant or linear set of basis functions to be used

as this is often the degree of knowledge known about the simulator a priori. This

formulation with explicit basis functions can also be constructed as in Eq. (4.11).

η(X) = m(X) + u(X) (4.11)

This separates the prior into mean and covariance structures stating u(X) as a

zero-mean Gaussian process i.e. GP (0 , K). The covariance matrix K defines the

prior assumption of the functions smoothness and is formed from the covariance

function (also known as a kernel function), presented in Eq. (4.12). The covariance

matrix, a description of the correlation between any two points in the input space

via a RKHS, must be positive semi-definite.
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Type Function Name Formulation
Mean Constant m = 1β
Mean Linear m = xβ
Mean Polynomial m = (1,x, . . . ,xp)Tβ

where p is the degree
Covariance Squared Exponential K = σ2

f exp
(
−(X −X ′)Ω(X −X ′)T

)
(SE)

Covariance Matérn K = σ2
f

21−ν

Γ(ν)

(√
2ν|X−X′|

`

)ν
Kν

(√
2ν|X−X′|

`

)
where ν is a smoothness parameter
commonly defines as a half integer
i.e. ν = p+ 1/2, p ∈ Z and ` = 1/ω

Table 4.1: A selection of mean and covariance functions for GP emulators.

K = k(X,X ′) = σ2
fc(X,X

′;ψ) (4.12)

Where σ2
f is an unknown variance, often called the scale factor or signal variance. A

chosen correlation function c(X,X ′;ψ) will reflect the prior smoothness assumptions

dependant on some hyperparameters ψ. A natural choice for emulators is the

Gaussian correlation function shown in Eq. (4.13), which assumes a smooth functional

output typical for many simulators. This correlation function leads to a Squared

Exponential (SE) kernel, which is also a stationary covariance invariant to translations

in the inputs.

c(X,X ′) = A = exp
(
−(X −X ′)Ω(X −X ′)T

)
(4.13)

Where Ω = diag(ω1, . . . , ωD) is a diagonal matrix of roughness parameters, defining

an Automatic Relevance Determination (ARD) correlation function [27]. ARD

kernels scale the effect each input dimension, where large values indicate a long term

trend for that dimension. Consequently, a covariance function depends on a set of

hyperparameters φk = {σ2
f ,ψ} which for a SE ARD kernel are {σ2

f , ω1, . . . , ωD}. A

selection of mean and covariance functions are presented in Table 4.1. The selection

of a particular mean and covariance function must reflect prior assumptions about

the structure of the simulator output [114].

The joint prior between the latent function values (for training η and testing η∗) at

training and testing inputs, X and X∗ respectively, can be formed as in Eqn. 4.14;

this uses the definition that a GP is collection of random variables where a finite set
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has a joint Gaussian distribution1.

[
η

η∗

]
∼ N

([
mη

m∗

]
,

[
Kη,η Kη,∗

K∗,η K∗,∗

])
(4.14)

The likelihood for a GP emulator is typically modelled as Gaussian, however the

variance term of the likelihood is debated. It is common for a GP emulator to

assume that the observations are ‘noise-free’ [78], i.e. repeats at the same set of

inputs will always result in the same output - for a deterministic simulator. Even

so, due to numerical instabilities in inverting the covariance matrix, GP regression

becomes impractical unless a nugget term is added; usually a fixed small number

to the diagonal of the covariance matrix i.e. K̃η,η = (Kη,η + νI); this is discussed

further in Section 4.2.1. The following mathematical definitions include a nugget

term ν, resulting in p (y |η) = N (η, νI) as the likelihood.

In order to perform inference the joint prior is combined with the likelihood to form

the joint posterior p (η,η∗ |y,φ) (the inputs are dropped for simplicity of notation)

using Bayes’ theorem (see Appendix A.1). The latent training function, η can then

be marginalised out, using standard multivariate Gaussian conditioning, to form

the posterior in closed form as shown in Eqs. (4.15) to (4.17) (see Appendix A.2 for

derivations).

p (η∗ |y,φ) = N (E1 (η∗),V1 (η∗)) (4.15)

E1 (η∗) = H∗ β +K∗,η K̃
−1
η,η (y −Hη β) (4.16)

V1 (η∗) = K∗,∗ −K∗,η K̃−1
η,η Kη,∗ (4.17)

Equations (4.15) to (4.17) describe the full predictive equations and are often used

in the machine learning literature [27], however this formulation leaves {β, σ2
f ,ψ} as

the set of hyperparameters to be inferred. Following the work of Bastos and O’Hagan

1For compactness ma is the mean function relating to the latent function a and Ka,b is the
covariance matrix between the latent functions a and b, e.g. Kη,∗ is the covariance between the
training and testing latent functions.
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[115] a weak (standard non-informative) prior is specified for β and σ2
f known as the

Jeffreys prior, p
(
β, σ2

f

)
∝ 1/σ2

f . This information, combined with Eq. (4.9) using

Bayes’ theorem, leads to an analytical posterior for (β, σ2
f ), a normal inverse-gamma

distribution, constructed from Eqs. (4.18) and (4.19).

p
(
β |y, σ2

f ,ψ
)
∼ N

(
β̂, σ2

f W
)

(4.18)

Where β̂ = Wη H
T
η Ã

−1
η,η y and W = (HT

η Ã
−1
η,η Hη)

−1.

p
(
σ2
f |y,ψ

)
∼ IG

(
N − p

2
,
(N − p− 2) σ̂2

f

2

)
(4.19)

Where σ̂2
f = (y −Hη β̂)T Ã−1

η,η (y −Hη β̂)/ (N − p− 2). The hyperparameters β can

be marginalised out by integrating the product of Eq. (4.15) and Eq. (4.18) with

respect to β resulting in Eqs. (4.20) to (4.22).

p
(
η∗ |y, σ2

f ,ψ
)

= N (E2 (η∗),V2 (η∗)) (4.20)

E2 (η∗) = H∗ β̂ + A∗,η Ã
−1
η,η (y −Hη β̂) (4.21)

V2 (η∗) = σ2
f

(
A∗,∗ − A∗,η Ã−1

η,η Aη,∗ + PWPT
)

(4.22)

Where P = H∗ − A∗,η Ã−1
η,η Hη. Following the same procedure as β, σ2

f is integrated

out from the product of Eq. (4.20) and Eq. (4.19), leading to a Student’s t process,

as presented in Eqs. (4.23) to (4.25).

p (η∗ |y,ψ) = T P (N − p,E (η∗),V (η∗)) (4.23)

E (η∗) = H∗ β̂ + A∗,η Ã
−1
η,η (y −Hη β̂) (4.24)
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V (η∗) = σ̂2
f

(
A∗,∗ − A∗,η Ã−1

η,η Aη,∗ + PWPT
)

(4.25)

Full Bayesian analysis would require setting a prior and integrating out ψ from the

posterior, in order to obtain the uncertainty associated with ψ. Due to the correlation

matrices A, and σ̂2
f depending on ψ, integrating out ψ leads to a highly intractable

function. This could be calculated numerically using a sampling approach, typically

via an MCMC algorithm at a high computational cost. In contrast, a Maximum

Likelihood Estimate (MLE), generated by maximising the marginal likelihood (usually

framed for numerical reasons as minimising the Negative Log Marginal Likelihood

(NLML), i.e. Eq. (4.26) is optimised according to Eq. (4.27)), is a fast and efficient

form of inference with the only negative being that the posterior variance is slightly

underestimated [69, 116]. Typically the computational savings outweigh the negative,

especially when emulating smooth simulators [69]. For this reason the plug-in

approach is implemented in this thesis.

− log p (ψ |y) ∝ 1

2
log |Aη,η| −

1

2
log |W |+ N − p

2
log(σ̂2

f ) (4.26)

ψ̂ = arg min(− log p (ψ |y)) (4.27)

Equation (4.27) in practice is implemented as an optimisation problem, typically using

a gradient based approach [27]. Rogers et al. demonstrate that a global optimisation,

specifically a quantum particle swarm differential evolution technique, consistently

optimises to better space when compared to a conjugate gradient approach [117]. As

a result in this thesis optimisation of the marginal likelihood is performed using a

quantum particle swarm algorithm [118].

A visual representation of the GP prior and Bayesian updated posterior (conditioned

on two observations) are presented in Fig. 4.1. The example shows a GP with a zero

mean and SE covariance function prior, which as stated is a prior over functions.

Samples can be drawn from the prior and Fig. 4.1a presents 20 draws indicating

possible plausible functions specified by the prior. Next, the simulator is evaluated

at two input points, providing two observations of the unknown latent function.

These evaluations are used in Eq. (4.23) performing a Bayesian update on the

prior. This can also be thought of as conditioning a joint multivariate Gaussian
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(a) (b)

Figure 4.1: Bayesian update of a univariate GP. Panel (a) demonstrates a zero mean
GP prior, with mean (dark blue) and three standard deviation confidence intervals
(blue shaded region), alongside samples from the prior (blue) and the simulator (red).
Panel (b) presented the posterior update given two simulator outputs as observations
(·), with mean (dark blue), three standard deviation confidence intervals (blue shaded
region), posterior samples (blue) and the simulator (red)

on two observations. Figure 4.1b shows the posterior distribution of the functions

given two outputs, which fit the simulator function exactly at those points with

no code uncertainty; expected given a deterministic simulator. Away from the

observations, code uncertainty (indicated by the 3σ confidence intervals) increases

in a smooth manner consistent with the covariance function selection (here a SE is

used) conditioned on the MLE estimates of the hyperparameters φk. The posterior

mean has altered fitting the data points in a smooth manner and tending towards

the prior mean as predictions occur away from the observations. This means that as

a GP emulator predicts away from a trained input region, predictions will return to

the prior. As more simulator observations are added, the GP will improve and code

uncertainty will reduce.

4.2.1 Numerical Issues

A key assumption in generating a probabilistic GP emulator for a deterministic

simulator is that the GP will fit a known simulator observation exactly with no

code uncertainty - a ‘noise-free’ assumption. This follows naturally as given the

same inputs the same output will always occur for a deterministic simulator. As a

consequence, no noise model is included in a GP emulator.
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Within other fields, such as machine learning and spatial modelling (kriging), where

real world observations are used, it is common to apply a homoscedastic noise

model, represented by a likelihood p (y |η) = N (η, σ2
nI) [27, 100]. This amounts

to including a constant on the diagonal of the covariance matrix, inferred as an

extra parameter in optimising the NLML. The inclusion of a noise model has the

effect of smoothing through observation points whilst estimating a noise variance.

The predicted posterior variance is a combination of the noise and latent function

variance (code uncertainty in an emulator context). An additional by-product of

including a noise variance is that it provides numerical stability in inverting the

covariance (or correlation matrices) in Eqs. (4.24) to (4.26).

It is debated in the field of emulation whether a nugget term ν is appropriate. The

‘noise-free’ assumption clearly argues that the term should not be included. Nonethe-

less in practical implementation, correlation (or covariance) matrices can become

ill-conditioned and, as the roughness parameters tend to infinity, become so poorly

conditioned that inversion is not possible. A frequently utilised pragmatic solution

is the addition of a very small nugget term to alleviate these problems. However,

adding a nugget is known to have the same affect as the noise variance, sometimes

leading to inference of the latent function η that smooths through observations with

a small variance, meaning that the GP no longer performs exact interpolation. Per

contra, it can be argued that the inclusion of a nugget captures any discrepancy

between the GP and the simulator, which may arise due to inaccurate assumptions

about stationarity, covariance structure or because certain inputs have been excluded

from the training set but will have a small effect on the simulator output.

Andrianakis and Challenor proposed a penalty to the marginal likelihood in order to

force a GP emulator with a nugget term to fit known data points exactly [116]. This

technique removes the NLML mode associated with type II likelihoods - those that

approximate the function, smoothing through and treating the nugget as noise - and

keeps the type I mode - the interpolation solution - when a nugget term is applied.

The penalty term, presented in Eq. (4.28), is a ratio of the MSE between emulator

mean and training outputs M̄(ψ, ν), and the MSE between a least squares estimate

and training outputs M̄(0).

π(ω, ν) = exp

(
−2

M̄(ψ, ν)

εM̄(0)

)
(4.28)
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Where M̄(ψ, ν) = (ν2/N)(y−Hη β̂)TA−2
η,η (y−Hη β̂) and M̄(0) = (y−Hη β̂0)T(y−

Hη β̂0)/N , where β̂0 = (HT
η Hη)

−1HT
η y - the least squares estimate. The interval

[0,−2] is chosen by Andrianakis and Challenor due to its association with 95% of

the probability mass of a distribution [116]. The parameter ε affects the penalisation

amount, with a larger portion of the marginal likelihood excluded as ε → 0. An

optimal heuristic is ε = 1× 10−3, which excludes the type II mode whilst keeping

the type I mode [116]. In this thesis a nugget term is included to improve the

conditioning of Aη,η whilst penalising the NLML as shown in Eq. (4.29).

− log p (ψ |y) ∝ 1

2
log |Aη,η| −

1

2
log |W |+ N − p

2
log(σ̂2

f ) + 2
M̄(Ω, ν)

εM̄(0)
(4.29)

Furthermore, the main computational load of training and predicting with a GP is the

inversion of Aη,η which has time complexity O(N3) often performed via a Cholesky

decomposition (Appendix A.3). By storing the inverted correlation matrix, A−1
η,η

prediction then becomes O(N) and O(N2) for the mean and covariance respectively.

Resultantly, as the data set size N increases the computational load may become

very burdensome and memory issues may also occur. Solutions to these problems

are addressed in Section 4.3.

4.2.2 Validation and Diagnostics

Discussed in Chapter 3, validation is an important process in the construction of

any model type, with GP emulators being no exception. A GP can provide poor

emulation of a simulator for two main reasons. Firstly, the model form assumed

by the initial GP prior is not appropriate for the simulator’s functional form. This

can occur if any component of the prior is ill-suited to the functional structure of

the simulator. For example, the mean function could be inappropriate, e.g. if a

polynomial mean is used for a periodic simulator output. The covariance function

could also impose incorrect assumptions, for example a stationary kernel is employed

when the correlation is input dependent (where some regions have a faster functional

transition that others) or if a SE kernel is utilised when the simulator output is

non-smooth. These problems are often solved with better model selection. On

the other hand, if joint normality is an unreasonable assumption for the simulator

outputs, and no transform of the output distribution possible, or if the outputs are
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uncorrelated, then a GP may be an invalid assumption. A second reason is when

the training data used to estimate the hyperparameters does not fully reflect, or is a

restricted case of the general space in which the emulator is expected to generalise.

This may lead to poor estimates of the hyperparameters that do not generalise. In

addition, if MLEs of the hyperparameters are employed (as stated in Section 4.2)

rather than integrating them out of the full posterior, and these estimates are in

the tails of the hyperparameter distribution due to inappropriate training data, the

posterior prediction will be poor as it is conditioned on these hyperparameters. As a

result diagnostics are required in order to improve predictions and generate a valid

emulator for a specific task.

In the following section diagnostic tools, validation metrics and their specific applica-

tion to GP emulators are presented. These tools are implemented on a numerical

example which is displayed in Fig. 4.2. The simulator equation is shown in Eq. (4.30),

where a grid of ten (N = 10) evenly spaced evaluations are used as training data

D = {x,y} for the emulator. Validation data is constructed from the inputs

x∗ = {−1, 0.99, . . . , 1} and their corresponding outputs y∗. The GP prior is formed

from a linear mean function H = 1 of dimension p = 1 and a SE kernel. The MLE

estimates of the hyperparameters are: ω̂ = 50.83, σ̂2
f = 0.84 and β = 1.27 (with a

fixed nugget ν = 1× 10−8).

y = η(x) = 2 cos(2π×2.5x)−2.5 cos(2π×2.2x)+0.15 cos(2π×6x)+5x−2 (4.30)

Individual Prediction Error (IPE) (or standardised residuals) allow an input depen-

dant assessment of the emulator predictions and are formulated via Eq. (4.31).

DIPE(y∗) =
y∗ − E (η∗)√
diag(V (η∗))

(4.31)

When the posterior is constructed from Eq. (4.23), and the emulator represents

the simulator well, these residuals should be distributed as a standard Student t

distribution of N − p degree of freedoms (conditioned on the training data D and

hyperparameters ψ). As the number of data points and degrees of freedom increase,

(or the posterior formulation in Eq. (4.15) is implemented) then the standardised

residuals will tend to a Gaussian distribution. The degrees of freedom (N − p) equal
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Figure 4.2: Posterior emulator prediction for the diagnostics numerical example.

9 from the training data in Fig. 4.2 meaning that the standardised residuals should

tend to a Student’s t. Visually a QQ-Plot, where the quantiles of two distributions

are compared, can indicate whether the residuals are Student’s t distributed. Fig. 4.3

presents two graphical interpretations of IPE, a comparison with the input index

(Fig. 4.3a), and a QQ-Plot (Fig. 4.3b).

IPE should remain low, with large values indicating problems, and clusters of high

standardised residuals indicating a systematic failure. To diagnose the cause several

avenues must be explored. When values are large and clustered close to validation

points the problem may be that the roughness parameters Ω are too small and have

been poorly inferred due to an inadequate training data set. If the values are large

but no systematic patterns can be determined, the estimate of the signal variance σ2
f

is likely to be the problem. When a large number of high IPEs are shown and they

are of the same sign, the mean function and β coefficient have been inappropriately

specified or a non-stationary kernel should be used. A heuristic definition of ‘large’

can be |DIPE| > 2 [115] (the same definition is used for all residual diagnostics).

Figure 4.3a therefore indicates that the residuals are appropriate. It can be seen that

the locations of worst performance are near the ends of the function, with a clear

patterns visible. This indicates that although the emulator is adequate in terms of

IPE residuals, the functional form has not been fully captured, potentially due to

the roughness parameter in the SE kernel. More training points around the ends of
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Figure 4.3: IPE diagnostic. Panel (a) displays the diagnostic against the input index
with ±2 thresholds and panel (b) a QQ-Plot of the residuals.

the function, or a change in covariance function to a Matérn kernel (that captures

less smooth functions better, see Table 4.1 — when ν =∞, Matérn = SE) could be

possible remedies. The QQ-Plot indicates that the IPEs are approximately standard

Student’s t distributed, however the area of steeper gradient indicates a possible

underestimation of the signal variance σ2
f .

Another method for generating standardised residuals, that removes correlation unlike

IPEs, are variance decomposition approaches. Here a standard deviation matrix

G, capturing the cross terms, is generated from a decomposition of the posterior

covariance matrix, i.e V (η∗) = GGT. The standardised errors, with uncorrelated

elements and unit variances are formed from Eq. (4.32).

DV D(y∗) = G−1 (y∗ − E (η∗)) (4.32)

These residuals, in the same manner as IPEs, indicate if the normality assumption

is invalid, being standard Student’s t distributed with N − p degrees of freedom

when Eq. (4.23) is used. This means that a QQ-Plot can be used as a graphical test.

Likewise as with IPEs, large values and systematic patterns diagnose problems with

the emulator, however their interpretation will change based on the decomposition.

Various decompositions can be used such as an eigenvalue, Cholesky or a pivoted

Cholesky decomposition. Figure 4.4 presents a demonstration of the diagnostic using

a pivoted Cholesky decomposition. By sorting the validation data by largest variance,

conditioned on the previous element, the pivoted approach produces the permutation
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Figure 4.4: Standard residuals via a pivoted Cholesky decomposition. Panel (a)
displays the diagnostic against the pivoting order from the decomposition with ±2
thresholds and panel (b) a QQ-Plot of the residuals.

matrix P and the upper triangular matrix R where the standard deviation becomes

G = PRT. If the standardised residuals are high/low in the initial part, this indicates

that σ2
f is inappropriate or that the function is heterogeneous, whereas the end of

the standardised residuals will indicate issues with the covariance function structure

and/or roughness parameters Ω. Figure 4.4a, although presenting residuals within

the thresholds, evidences that the variance of the function could be better captured.

This is stated by the large DPC at the beginning of the pivot order and may infer

that either σ2
f is underestimated or that the roughness parameter ω is too long. This

is confirmed by the QQ-Plot where although the majority of data lies on the reference

line, heavy tails indicate larger variability than estimate by the emulator. When

compared with IPEs, it can be seen that the cause of this seems to be because the

estimated emulator function smooths through the first and last simulator points.

Mahalanobis distances can be implemented as a summary statistic or diagnostic

and is a measure of the distance between a point and an ellipse. The metric can

be formulated from the variance decomposition, DMD(y∗) = DV D(y∗)
TDV D(y∗) or

from Eq. (4.33).

DMD(y∗) = (y∗ − E (η∗))
TV (η∗)

−1(y∗ − E (η∗)) (4.33)

If the emulator outputs are fully independent then the Mahalanobis distance with

the full posterior covariance V (η∗) and variance diag(V (η∗)) matrices will be equal.
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(a) (b)

Figure 4.5: Panel (a) presents the individual Mahalanobis distances DMD, when
independence of the outputs is assumed. Panel (b) displays the individual log
posterior likelihoods p (y∗ | ν,η∗) (where ν = N − p, the degrees of freedom), when
independence of the outputs is assumed.

A comparison of these two values can help diagnose the degree of correlation in

the posterior; 11.47 and 42.28 respectively for the example indicate a degree of

dependence in the outputs. A large Mahalanobis distance would indicate poor

emulation of the simulator.

Individual Mahalanobis distances can be calculated by assuming the posterior at

each test point is independent. A visualisation of this metric presents a scale of the

distance between posterior predictions and test points. Figure 4.5a demonstrates the

application of this diagnostic. It can clearly be seen that predictions are worst at

the edges of the function, again stating that the variation of the simulator has not

been fully captured, indicating the roughness parameter may be too long.

The posterior density is a scaled version of the Mahalanobis distance. Here the

posterior PDF is assessed for the predictive point; interpreted as a posterior likelihood

— the likelihood of the test point being drawn from the model. The PDF will either

be Gaussian or Student’s t depending on the posterior equations. When Eq. (4.23)

is implemented the diagnostic is formulated as shown in Eqs. (4.34) and (4.35).

p (y∗ |N − p,η∗) = Zt

(
1 +

1

N − p
(y∗ − E (η∗))

TV (η∗)
−1(y∗ − E (η∗))

)−N−p+n
2

(4.34)
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Zt =
Γ
(
N−p+n

2

)
Γ
(
N−p

2

) (N − p)−n(π)−n/2|V (η∗)|−1/2 (4.35)

Where n is the number of test points in y∗, Zt is the normalising constant and

Γ(·) is a gamma function. For numerical reasons the diagnostic is often used in log

form, called the log posterior likelihood (i.e. log p (y∗ |N − p,η∗)). Both dependent

and independent forms can be calculated (in the same fashion to the Mahalanobis

distance), however the log posterior likelihood is generally less interpretable than

the Mahalanobis distance. For the numerical example the log posterior likelihood

is 1366 and −117 when V (η∗) and diag(V (η∗)) are used respectively. This would

further indicate that the test data is most likely to have come from the emulator

with dependence between the outputs, meaning the independence assumption is not

maintained. Furthermore, the log posterior likelihood can be calculated individually,

assuming independent outputs (i.e. using diag(V (η∗))), as shown in Fig. 4.5b. The

log posterior likelihood is high at the training points and decreases away from these

locations, with global minimums around the start and end of the function. This

reinstates that the emulator performs poorly in these regions.

Model criticism via MMD is also achievable (see Section 3.4 for mathematical details)

[49], however it is excluded from this discussion as it is best suited for situations

where the model is compared to stochastic outputs.

Standard regression diagnostics that treat the output as deterministic can also be

implemented. These measures will fail to fully explain the performance of a GP

emulator due to its probabilistic formulation and therefore should never solely be

used to assess the emulator validity. These scores are primarily useful for comparing

GPs with other deterministic regression approaches and assessing the posterior mean.

Two diagnostics are presented: NMSE and R2 score.

The NMSE formulation, presented in Eq. (4.36), is a highly interpretable diagnostic.

A score of zero indicates mean predictions without any error. Conversely, a score of

100 represents a scenario where the prediction is no better than taking the mean of

the true values (ȳ∗ = E (y∗)).

NMSE =
100

Nσ2
y∗

∑
(η∗ − y∗)2 (4.36)
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Where σ2
y∗

is the variance of test outputs. The mean prediction from the emulator

has a NMSE of 6.43, which implies a relatively good fit.

The R2 score (or coefficient of determination) is a measure of how well the mean

prediction explains the test points variation (a ratio of the model explained variation

over the total variation). The R2 score can be calculated using Eq. (4.37), where

a score of zero indicates that 0% of the variation is explained by the model and 1

represents that 100% of the variation is captured.

R2 = 1−
∑

(y∗ − η∗)2∑
(y∗ − ȳ∗)2

(4.37)

An issue arises that as more basis functions are added to H, the R2 score will always

increase, meaning that the score will improve with overfitting. Instead the adjusted

R2 should be used to take into account the degrees of freedom of the data and the

model, shown in Eq. (4.38).

aR2 = 1− (1−R2)
N − 1

N − p− 1
(4.38)

This addition means that the score is penalised as more basis functions are added,

meaning that it will favour minimally complex models. The adjusted R2 score for the

example is 0.93, and would indicate that the emulator mean captures the variation

in test outputs well.

By considering all the diagnostics presented, the emulator in Fig. 4.2 can be shown

to be functionally appropriate, with the simulator test data lying comfortably within

the predicted probability mass. Improvements could be made in order to better

capture the beginning and end of the function. These improvements could be to

change the covariance function to a Matérn class, to increase the training data with

evaluations near the beginning and end of the function or to improve the estimates

of σ2
f and ψ.

4.2.3 Latin Hypercube Design

GP emulators are constructed from a set of N simulator evaluations. However, due to

the computational expense in running a simulator each evaluation should be optimal
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for making inferences about the simulator. The process of generating a strategy for

where to evaluate a simulator sits within the Design of Experiments (DoE) field. The

main objective of a DoE is to fill a given input domain, known as space-filling. In

the context of a simulator it may be that several parameters are to be statistically

studied and require emulation. This leads to designing an experiment that covers a

several dimension sized domain in which simulator evaluations are to be run. A DoE

method will look to fill that space in a manner that allows good coverage for a given

budget of simulator runs.

For the majority of emulation applications an initial space filling design is required

(that may later be updated in order to improve emulator performance). Numerous

strategies exist for generating a DoE with examples being Monte Carlo sampling

techniques, Latin Hypercube Design (LHD), maximum entropy sampling (discussed

further in Section 6.2.2), Sobol sampling and Halton sampling. Detailed explanations

of these approaches are beyond the scope of this thesis, with the choice of DoE

method being user and problem dependent; for a detailed review see [119]. Most

of these approaches create a uniformly spaced design, however when fitting a GP

emulator, evaluation locations should also be close to the domain boundary in order

to accurately capture the behaviour in these regions. To visualise this problem

an example is introduced where a simulator is constructed from Eq. (4.39) (with

15 equidistant training points) and is presented in Fig. 4.6a (the hyperparameter

estimates are ω̂ = 30.15, σ̂2
f = 1.42 and β̂ = 0.66 with a fixed nugget ν = 1× 10−9).

Typical code uncertainty will be in the form of Fig. 4.6b, where increases are seen

around the boundary of the domain, meaning that to improve emulator performance

a concentration of design points should be located at the boundary. A method for

achieving this is called a Generalised Maximum Latin Hypercube Design (GMLHD)

[120].

y = η(x) = 1.2x+N (x | 0, 0.1)−N (x | 0.3, 0.3)−N (x | −0.1, 0.4) + cos(2π× 2x)

(4.39)

Latin Hypercubes

A Latin Hypercube (LHC) is a random space filling DoE that is a D dimensional

extension of the Latin square sampling method. A sampling design is Latin square if
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Figure 4.6: Panel (a) presented the posterior emulator prediction for a numerical
example. Panel (b) demonstrates typical GP emulator uncertainty (one standard
deviation,

√
diag(V (η∗)) ) when equidistant training points are used in [−1, 1].

given an N ×N grid of possible sample locations in two dimensions (D = 2), there

is only one sample in each row and location. An example for N = 21 is displayed in

Fig. 4.7a.

To construct a random LHC L, in the space RD of N points (in each dimension),

elements of the vector x = {x1, . . . , xN}T (typically in [0, 1] and then scaled) are trans-

formed through random permutations for each dimension (i.e. L = {x1, . . . ,xD}).
However, by construction a LHC will not necessarily be maximally separated. For

this reason maximum (or optimised) LHCs are constructed.

Optimal criteria must be defined in order to generate a maximum LHC. Here

two criteria are used, a distance measure (Eq. (4.40)) — specifically the LHC

with minimum squared euclidean distance d(L) and minimal re-occurrences of that

minimum distance n(L) — and a force measure (Eq. (4.41)) — namely the sum

norm of the repulsive forces F (L), when samples are considered electrically charge

particles (where a squared term is used to avoid square root computations, increasing

the speed with which F (L) is calculated).

d(L) = min
1≤i, j≥N, i6=j

||xi − xj||2 (4.40)

F (L) =
N∑
i=1

N∑
j=i+1

1

||xi − xj||2
(4.41)
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Figure 4.7: Latin squares where N = 21. Panel (a) demonstrates a random Latin
square, panel (b) a maximum Latin square (using a force criteria), and panel (c)
a generalised maximum Latin square (transforming (b) through Eq. (4.43) where
a = 0).

With these definitions a LHC L1 is better than L2 when d(L1) > d(L2); in scenarios

where d(L1) = d(L2) then where n(L1) < n(L2). For the force criteria, L1 is better

than L2 when F (L1) < F (L2). The specified criteria can be framed as an optimisation

problem to identify a maximum LHC for x in RD.

One approach to optimising a LHC is to use a genetic algorithm [121] as outlined in

Algorithm 2. The fitness function is either evaluated by assessing d(L) and n(L) (if

distance is the criteria) or F (L) (when force is used). The best half of the population

are the largest distances (with the least repeats of that distance) or the smallest

force, with these surviving LHCs becoming parents. In the cross-over stage, children

are created by keeping the best LHC (becoming the 1st and (Npop/2+1)th child) and

performing cross-overs with the remaining i survivors. The first Npop/2 children are
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obtained by taking a random column of the ith parent and substituting it into the

best LHC. Remaining children are generated by taking a random column of the best

LHC and placing it inside the corresponding ith parent. Once all the children have

been generated mutation is performed on all but the 1st child. Here each column for

every child is assigned a number in [0, 1] based on a uniform distribution and when

lower than a threshold pmut, two random elements are swapped in that column before

the fitness is assessed. The best LHC from that new population is checked against

Eq. (4.42) (for the force criteria). An example of an optimised LHC is presented in

Fig. 4.7b.

F (Lk)− F (Lk−n) < ε(F (Ln)− F (L0)) (4.42)

Where n is a few iterations (e.g. n = 50), as there is no guarantee of improvement

every iteration, L0 is the initial best LHC, k is the current iteration where Eq. (4.42)

is only assessed when k is a multiple of n, and ε is small (here ε = 10−7).

Algorithm 2 Optimised Maximum Latin Hypercube

Draw Npop random LHCs
Evaluate fitness for all individuals in population
Stop = false
while Stop 6= true do

Select best half of population as survivors
Cross-over survivors to generate Npop children
Mutate children to generate new population
Evaluate fitness for all individuals in new population
if best LHC meets stopping criteria then

Stop = true
end if

end while

Generalised Maximum Latin Hypercube Design

A GMLHD aims to reduce the uncertainty at the edges of a GP emulator by placing

design points near the boundary, whilst remaining well spaced [120]. The main

approach is to take a uniform maximum LHC (in [0, 1]D) where the ith, jth element

is denoted zi,j and transform the design points through a beta quantile function (an

inverse CDF) given a tuning parameter a ∈ [0, 1], shown in Eq. (4.43).
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LHD NMSE DMD log p (y∗ |N − p,η∗)
Random 90.281± 62.162 5078± 1.7739 −186± 420
Maximum 0.012 338 1494
Generalised (a = 0.8) 0.008 345 1507
Generalised (a = 0.6) 0.005 292 1502
Generalised (a = 0.4) 0.004 206 1474
Generalised (a = 0.2) 0.003 142 1429
Generalised (a = 0) 0.003 113 1374

Table 4.2: Comparison of GP emulator predictions when trained using different LHDs
where D = 2 and N = 21. The random LHD results are an average of 25 realisations
with the mean and standard deviation are shown. The simulator is Eq. (4.44). Both
DMD and log p (y∗ |N − p,η∗) assume independent posterior variance.

xi,j =
1

B((1 + a)/2, (1 + a)/2)

∫ zi,j

0

t(a−1)/2(1− t)(a−1)/2dt (4.43)

Where B denotes a beta function. A beta quantile function is implemented as

it is known that for large degree polynomial regression an arc-sine distribution

(when a = 0) is the limit distribution of its D-optimal design (see [120] for more

mathematical justifications). An arc-sine distribution will put more mass on the

design space edges, whereas the other extreme where a = 1 will result in a uniform

distribution (leaving the maximum LHC unchanged). Figure 4.7c presents an example

of a generalised maximum Latin square where Figure 4.7b is transformed through

Eq. (4.43).

Table 4.2 presents a comparison of LHDs when a random, maximum and generalised

maximum LHCs are used to determine the training points of a GP emulator, where

D = 2 and N = 21. The numerical example uses the simulator shown in Eq. (4.44).

The training GP emulators were tested against a N ×N grid and validation metrics

assessed as displayed in Table 4.2.

y = η(X) = 2(x1 − 2 + 10x2 − 8x2
2)2 + 2

√
x2 + 1 (2x2)2 (4.44)

It is demonstrated that as expected a random LHD performs worst on all validation

metrics with a maximum LHD being outperformed by the GMLHD. This agrees with

finding of Dette and Pepelyshev in [120], who show that a GMLHD will outperform

a maximum LHD and Sobol sampling for a variety N and D. Generally the decrease

in a coincides with better emulator performance, as shown by the NMSEs and
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Mahalanobis distances. On the contrary, the log posterior likelihood indicates that

the GP model which most likely explains the data is that trained using a GMLHD

where a = 0.8. The parameter a should be set according to the intended use case,

with a low a being applied in scenarios where the function needs to be accurately

specified at the boundary with low variance.

4.3 Sparse Gaussian Process Emulators

An issue with GP regression is that training costs O(N3) (for N observations) with

prediction of the mean and variance costing both O(N) and O(N2) respectively [122–

124]. Although substantially more computationally efficient than running a simulator,

this time complexity can make GPs computationally demanding in circumstances

where N is significantly large, such as in large parameter spaces, often due to

high-dimensionality. Sparse GP approximations seek to reduce this computational

complexity by reducing the computational load of inverting Kη,η.

The simplest and most naive approach is to select a Subset of Data (SoD) of size

Q from the full training data set (of size N where Q � N) in order to scale

down the time complexity to O(Q3) [122]. The problem is difficult as it relies

on a known redundancy within the original data set, which is often not the case

— especially in expensive evaluations of a simulator. This loss of information is

generally unacceptable in an emulation context, as any simulator runs are expected

to have come at a large computational cost. An alternative to SoD is the local GP

approach [123]. A simple implementation of local GPs is to divide a data set into

equal block sizes of size B and fit a GP to each block; reducing the computational

complexity to O(NB2). An issue with the technique is that discontinuities will occur

between each data block, which can be unacceptable in emulators that are assumed

to have smooth outputs. A less naive implementation of the local GP approach is

to use a clustering algorithm to categorise the data into various subsets and fit GP

models to each subset of data. As a consequence, the computational complexity of

the method will not only be dominated by the largest subset, but will also incur

the additional cost of the clustering algorithm. As a result, both SoD and local GP

approaches are often not appropriate.

Two key approaches exist for generating sparse GPs, approximating the model or

posterior. The techniques use inducing inputs [122] (originally referred to as ‘pseudo-
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inputs’ [125]) Z = {zm}Mn=1, that have latent function outputs u (realisations of a

GP), known as inducing variables, in order to produce sparsity. These two groups

of methods are discussed in the following sections. It is noted that the approaches

below are conditional on the full set of hyperparameters φ, where similar procedures

to those in Section 4.2 could be used to marginalise them out. A zero mean function

is also assumed in order to simplify notation. Furthermore, both the X and φ

are dropped from the conditional probabilities in order to preserve neatness and

interpretability of notation.

4.3.1 Model Approximations

Quiñonero-Candela and Rasmussen present a unified framework for model approxi-

mations [122]. These approaches seek to modify the joint prior p (η∗,η) of the GP

Eq. (4.14) in order to replace the complexity of inverting Kη,η with a less expensive

inversion. This is performed by incorporating inducing points {Z,u} (where Z are a

set of inducing inputs and u are the corresponding latent function evaluations) into

the joint prior p (η∗,η,u) and marginalising the inducing variables, u, out of the

posterior (although Z will affect the final solution). The key assumption for these

sparse methods is that the joint prior can be approximated by assuming conditional

independence between η∗ and η given u. This means that η∗ and η are only linked

through u; demonstrated in Eq. (4.45).

p (η∗,η) ' q (η∗,η) =

∫
p (η∗ |u)q (η |u)p (u)du (4.45)

Where p (u) = N (0, Ku,u) is the prior2 for the latent variables u and the test

conditional, p (η∗ |u), is defined in Eq. (4.46).

p (η∗ |u) = N
(
K∗,uK

−1
u,uu, K∗,∗ −Q∗,∗

)
(4.46)

It is noted that the notation Qa,b = Ka,uK
−1
u,uKu,b is used. The two model approxi-

mation methods detailed differ in their assumption about the training conditional

q (η |u), whilst assuming the same prior for the inducing variables and likelihood.

2It is common for a nugget, εI to be incorporated here [126] for the same reasons as outline for
emulators previously, i.e. increases the stability of the inversion of the covariance matrix. A nugget
is implemented in this thesis meaning p (u) = N (0,Ku,u + εI).
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The assumptions for the training conditional q (η |u), and the marginalised joint

prior p (η∗,η), for both a Deterministic Training Conditional (DTC) and Fully

Independent Training Conditional (FITC) approximation are shown in Table 4.3.

The main difference between DTC and FITC is clear in the joint prior, presented

in Table 4.3. The top left corner of the covariance is modified in FITC so that the

approximation includes the exact covariance on the diagonal. This transforms the

training conditional from deterministic to fully independent.

Method DTC FITC

q (η |u) N
(
Kη,uK

−1
u,uu, 0

)
N
(
Kη,uK

−1
u,uu, diag(Kη,η −Qη,η)

)
p (η∗,η) N

(
0,

[
Qη,η Qη,∗
Q∗,η K∗,∗

])
N
(

0,

[
Qη,η − diag(Qη,η −Kη,η) Qη,∗

Q∗,η K∗,∗

])

Table 4.3: DTC and FITC assumptions for the training conditional q (η |u) and
the joint prior p (η∗,η). The joint prior p (η,η∗) is calculated by substituting the
training condition q (η |u) into Eq. (4.45) and solving the integral which can be done
in closed form.

The posteriors q (η∗ |y) and log marginal likelihoods p (y |X) for the DTC and FITC

approximations can be unified into the analytical form outlined in Eq. (4.47) and

Eq. (4.48) [124]. This is performed by substituting the assumptions from Table 4.3

into Eq. (4.45) and solving the integral (using standard Gaussian conditionals in

Appendix A.2).

q (η∗ |y) = N
(
Q∗,ηK̄

−1
η,ηy, K∗,∗ −Q∗,ηK̄−1

η,ηQη,∗
)

(4.47)

log p (y |X) = −1

2
log |K̄η,η| −

1

2
yT K̄−1

η,ηy −
N

2
log 2π (4.48)

Where K̄η,η = Qη,η+diag(α(Kη,η −Qη,η))+νI. The marginal likelihood and posterior

of the two methods can be formulated by setting α to zero or one for the DTC and

FITC approximations respectively. After setting α, the low rank structure of K̄η,η

should be exploited using the Woodbury inversion and determinant lemmas in order

to improve the computational efficiency (see Appendix A.3). These amendments

reduce the computational complexity for training to O(NM2) and for prediction to

O(M) and O(M2) for the mean and variance respectively [122–124].
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The inducing inputs can be either a subset of the input data or as any set of points

from the real line. The subset of inputs poses challenges when global prediction

quality is required as the selection of inducing inputs from a discrete set of data will

involve some form of greedy or combinatorial optimisation. In contrast, considering

the inducing inputs as any point on the real line leads to a continuous optimisation

problem [125]. This allows the inducing inputs to be inferred via optimisation of the

log marginal likelihood. When the inducing inputs are equal to the training inputs,

the marginal likelihood and the posterior are the same as the full GP for both DTC

and FITC. A key drawback of model approximation methods are that optimising

via the approximate marginal likelihood means treating the inducing inputs as

parameters of the model, adding all the problems of overfitting and optimisation

that are evident in parametric models [124, 127]. This view of the inducing points

means the assumptions about the data and inference approximations are coupled.

Learning via the exact marginal likelihood of the approximate model also means that

the hyperparameters will be optimal for the approximate model and not necessarily

the full GP.

Figures 4.8 and 4.9 present univariate numerical examples where the simulator output

is a sample from a GP process with zero mean and a SE covariance; σ2
f = 1 and

ω = 8. The examples demonstrate the difference in the two approaches when the

hyperparameters φ and inducing inputs Z are learnt through optimising the log

marginal likelihood in Eq. (4.48). These illustrate a comparison of the two sparse

GP methods, DTC and FITC, with a full GP solution and the training data, where

the mean and ±3σ confidence intervals are displayed for the full and sparse GPs. It

is shown that FITC gives a better approximation of the variance than DTC that

tends to overestimate (due to the deterministic assumption). Signs of overfitting

are present in both methods. The variance for DTC when X ≈ 0.9 reduces almost

to zero, displaying overconfidence in the prediction when it would be expected to

increase from the last training point, shown in the full GP solution. Figure 4.9

visually demonstrates that FITC fits the middle section of training data well, however

the variance starts to increase before the training data boundary. This indicates that

the inducing points have been placed in locations that overfit the middle section of

the training data, leading to poor generalisation.
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Figure 4.8: Predictions from a sparse DTC GP with 10 inducing points, against a full
GP and training simulator data for a numerical example. Shaded regions indicate
±3σ confidence levels.

Figure 4.9: Predictions from a sparse FITC GP with 10 inducing points, against a
full GP and training simulator data for a numerical example. Shaded regions indicate
±3σ confidence levels.
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4.3.2 Posterior Approximations

An alternative approach to model approximations is to apply sparsity at the inference

stage, approximating the posterior and marginal likelihood. Here two approaches

Variational Free Energy (VFE) [127] and Power Expectation Propagation (PEP) are

considered — PEP has been shown to be a framework unifying both VFE and FITC

[124].

VFE aims to approximate the true posterior directly by constructing a variational

approximation and maximising the evidence lower bound Fv(Z, φ) (which is a lower

bound of the log marginal likelihood log p (y |X)) using Jensen’s inequality. VFE is

a specific form of variational inference (also formulated in a more general sense with

an uncollapsed bound [128]) that incorporates the inducing inputs as parameters of

the variational inference removing problems associated with treating them as model

parameters.

The approach begins by describing the predictive posterior in Eq. (4.15) as the

marginalisation of the conditional prior p (η∗ |η), p (η∗ |y) =
∫
p (η∗ |η)p (η |y)dη

which becomes the target of a variational approximation. By augmenting the integral

with a set of inducing variables u, with the assumption that η∗ and η are conditionally

independent given u, (in a similar fashion to a FITC model approximation approach)

an approximate predictive posterior is formed as in Eq. (4.49); where φ(u) =

N (µv,Σv), a ‘free’ variational Gaussian distribution dependant on the ‘free’ inputs

Z.

p (η∗ |y) ≈ q (η∗) =

∫
p (η∗,u)φ(u)du =

∫
q (η,u)du (4.49)

The inducing inputs Z and the ‘free’ distribution φ(u) can be specified by minimising

the divergence between the variational distribution and the augmented true posterior

distribution p (η,u |y), using the KL-divergence, KL(q (η,u)||p (η,u |y)) — this is

equivalent to maximising the lower bound of the true log marginal likelihood defined

in Eq. (4.50) and rearranged in Eq. (4.51).

Fv(Z, φ) =

∫
p (η |u)φ(u) log

p (y |η)�����p (η |u)p (u)

�����p (η |u)φ(u)
dηdu (4.50)
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Fv(Z, φ) =

∫
φ(u)

(∫
p (η |u) log p (y |η)dη + log

p (u)

φ(u)

)
du (4.51)

Where Eq. (4.51) separates out the integral with respect to η, which can be solved

in Eq. (4.52) and substituted into Eq. (4.51) forming Eq. (4.53).

∫
p (η |u) log p (y |η)dη = log

(
N
(
Kη,uK

−1
u,uu, Iν

))
− 1

2ν
tr(Kη,η −Qη,η) (4.52)

Fv(Z, φ) =

∫
φ(u) log

N
(
Kη,uK

−1
u,uu, Iν

)
p (u)

φ(u)
du− 1

2ν
tr(Kη,η −Qη,η) (4.53)

The logarithm can be moved outside of the integral in Eq. (4.53) by assuming that

the Jensen’s inequality (the assumption that formed Eq. (4.50)) can be reversed,

leading to the φ(u) terms cancelling. The variational lower bound is therefore formed

in Eq. (4.54) by solving the integral
∫
N
(
Kη,uK

−1
u,uu, Iν

)
p (u)du.

Fv(Z) = −1

2
log |Qη,η + νI| − 1

2
yT (Qη,η + νI)−1y − N

2
log 2π − 1

2ν
tr(Kη,η −Qη,η)

(4.54)

Finally the optimal ‘free’ distribution φ̂(u) can be obtained by differentiating with

respect to φ(u), and setting this to zero as shown in Eq. (4.55).

φ̂(u) =
N
(
Kη,uK

−1
u,uu, Iν

)
p (u)∫

N
(
Kη,uK−1

u,uu, Iν
)
p (u)du

=
zcN (µv,Σv)

zc
(4.55)

Where zc and N (µv,Σv) are the constant and distribution from the product of

two Gaussian distributions (see Appendix A.2) with mean and covariance; µv =

ν−2Ku,uAKu,ηy and Σv = Ku,uAKu,u where A = (Ku,u + ν−2Ku,ηKη,u)
−1.

Equation (4.54) is equivalent to that of the DTC approximation with the inclusion of a

trace regularisation term. This means that the objective function in the optimisation

is a true lower bound of the marginal likelihood. By substituting the optimal ‘free’
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distribution into Eq. (4.49) and using standard Gaussian conditionals the closed

form predictive posterior can be obtained, as in Eq. (4.56).

q (η∗ |y,θ) = N
(
Q∗,ηK̃

−1
η,ηy, K∗,∗ −Q∗,ηK̃−1

η,ηQη,∗

)
(4.56)

Where K̃η,η = Qη,η + νI. The approximate posterior is identical to that of DTC

meaning VFE can be thought of as DTC but penalised by a term proportional to the

summed variances. This term protects against overfitting and forces the inducing

inputs to better explain all the data, improving their optimised locations. The

approach remains non-parametric because the inducing points become variational

parameters meaning any additional inducing points will always increase the prediction

quality, which cannot be claimed for model approximation methods.

An additional approach to approximating the posterior is to use a PEP frame-

work [124]. The method seeks to approximate the joint-distribution in the form of

Eq. (4.57).

p (η∗,y) = p (η∗ |y)p (y) ≈ p (η∗)
∏
n

tn(u) = qun (η∗) (4.57)

Where (·)un indicates an unnormalised process. Equation (4.57) shows that only

the likelihood term in the exact posterior is approximated and by a factor tn(u) —

assumed to be Gaussian. PEP then iteratively modifies the factors in order to capture

the behaviour the true likelihood imposes on the posterior, i.e. the best surrogate

likelihood that approximates the posterior. The PEP algorithm involves three steps

in which a fraction α of the approximate likelihood function is incorporated iteratively

for each factor that needs to be approximated.

1. Deletion: a fraction of one approximate factor is removed in order to evaluate

the cavity distribution (this is an approximate leave-one out joint, where \n

indicates leave-one out)3, qun\n (η∗) ∝ qun(η∗)/t
α
n(u).

2. Projection: a tilted distribution is projected onto the posterior distribution

3p∗\n(η∗) = p (η∗,y)/p (yn | ηn) ≈ qun\n (η∗) = qun(η∗)/tn(u).
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using the alpha-divergence4 for unnormalised densities:

qun\n (η∗)← arg minDα(p̃(η∗)||qun\n (η∗)).

The titled distribution is formulated by using the same fraction of the true

likelihood as used in creating the cavity distribution, p̃(η∗) = qun\n (η∗)p
α(yn|ηn).

3. Update: An updated factor is calculated by the inclusion of a new frac-

tion of the approximate factor, tn(u) = t1−αn,old(u)tαn,new(u) where tαn,new(u) =

qun(η∗)/q
un
\n (η∗).

When a Gaussian likelihood is assumed the PEP approach has a closed form solution

[124]. This is because the approximate factors can be defined at convergence as stable

fixed points and the update step remains the same. The factor of the likelihood

tn(u) and inducing variable distribution qun (u) are shown in Eqs. (4.58) and (4.59).

tn(u) = N
(
Kηn,uK

−1
u,uu, αDηn,ηn + ν

)
(4.58)

qun (u) = N
(
Ku,ηK̄

−1
η,ηy, Ku,u −Ku,ηK̄

−1
η,ηKu,η

)
(4.59)

Where Dη,η = Kη,η −Qη,η. These lead to a closed form approximate log marginal

likelihood logZPEP and posterior q (η∗ |y) defined in Eqs. (4.60) and (4.61) — where

Eq. (4.61) is equivalent to the model approximation posterior.

logZPEP = −1

2
log |K̄η,η| −

1

2
yT K̄−1

η,ηy −
N

2
log 2π − 1− α

2α

∑
n

log(1 + αDηn,ηn/νI)

(4.60)

q (η∗ |y) = N
(
Q∗,ηK̄

−1
η,ηy, K∗,∗ −Q∗,ηK̄−1

η,ηQη,∗
)

(4.61)

Interesting results occur when α = 1 and as α → 0, the PEP posterior and log

marginal likelihood become equivalent to the FITC and VFE approach respectively.

This unifying view is helpful in understanding the effects of the parameter α. When

4An alpha-divergence is Dα(P ||Q) = 1
α(1−α)

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx.
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Figure 4.10: The effect of the number of inducing inputs M and α on the performance
of the PEP formulation of sparse GPs averaged over 25 repeats for the NLML (left)
and the NMSE (right). Shaded regions indicate ±σ confidence intervals.

α < 1 the last term of the PEP log marginal likelihood 1−α
2α

∑
n log(1 + αDηn,ηn/νI)

will act as a regularising term and making sure that the model generalises well to

new outputs; the extreme of the penalty term being the VFE trace term. Bauer et

al. produced an overview of the differences between the FITC and VFE approaches

[126]. They state that FITC has several negative drawbacks, it can overestimate the

marginal likelihood, underestimate the noise/nugget, is not guaranteed to improve

when more inducing points are added and does not recover the true posterior. VFE

in contrast, can overestimate the noise/nugget, does improve with more inducing

points and will recover the true posterior where possible whilst providing a true lower

bound of the marginal likelihood.

When employing a posterior approximation approach, the nugget term will need

to be inferred as a hyperparameter, rather than a fixed term. This is because the

nugget now includes a measure of the uncertainty introduced by using a low rank

approximation when performing inference. It is noted that both VFE and PEP

approximations result in a computational complexity of O(NM2) for training with

O(M) and O(M2) for the mean and variance predictions [124, 127].

Figures 4.10 and 4.11 demonstrate the effect of additional inducing points and the α

parameter for a different one-dimensional numerical example. Here the simulator

output is a sample from a GP with zero mean and a SE covariance function; σ2
f = 1,

ω = 30. Sparse GPs models were created with α = 0, 0.25, 0.5, 0.75, 1 and are

compared to the full GP solution and training data in Fig. 4.11, where mean and ±3σ
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Figure 4.11: Predictions from posterior approximation and FITC sparse GPs with
15 inducing points, against a full GP, and training simulator data for a numerical
example. Shaded regions indicate ±3σ confidence levels. Top left panel, VFE (α = 0);
top right panel, FITC (α = 1); middle left panel, PEP α = 0.25; middle right panel,
PEP α = 0.5; and bottom panel PEP α = 0.75.
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confidence intervals are presented. A stochastic optimisation method was utilised

for inferring the hyperparameters with 25 repeats to quantify the variance in the

inference, presented in Fig. 4.10 as ±σ confidence intervals. It is demonstrated

that the NLML (− log p (y |X) ≈ −Fv(Z) ≈ − logZPEP ) reduces as more inducing

points are added, stating that the model better explains the data given more inducing

inputs. The NLML also increases with α, in contrast, the NMSE is high with larger

variance for FITC, a clear indication that the method has experienced overfitting. It

is noted that there is significant overlap in NMSE results for VFE and PEP when

α = 0.25, 0.5, indicating their predictions are very similar.

The PEP approach, when α = 0.25, 0.5 provides better predictions of the data

when compared to FITC and PEP at α = 0.75, demonstrated by low NLMLs that

correspond to low NMSEs. FITC and PEP when α = 0.75, although showing

low NLMLs, have high NMSEs with large variance, especially when the number

of inducing points is low; which is a clear sign of overfitting. VFE tends to have

high NLML with comparable NMSE to PEP when α = 0.25, 0.5. Figure 4.11

demonstrates that the variance of the VFE prediction is larger than the full GP

solution, with the variance of both the PEP formulations when α = 0.25, 0.5, visually

matching the full GP more closely. For these reasons it can be argued that PEP,

when α = 0.25, 0.5, preforms better in these examples. A close inspection of the

NMSE in Fig. 4.10 for PEP when α = 0.5 demonstrates lower values than any of the

posterior approximation methods. This leads to the conclusion that PEP with an

α = 0.5 outperforms other α values (FITC and VFE included) which is consistent

with the findings of Bui et al [124]. The question still arises of how to choose the α

parameter. Optimisation is not advised as a value of 1 will lead to overfitting due

to the FITC approximation. It is the experience of the author that a value of 0.5

should give satisfactory performance, in-keeping with the finding of Bui et al. [124].

4.3.3 Considerations for Sparse Gaussian Process Emula-

tors

There are two main reasons why a sparse GP approximation can be useful in creating

an emulator. Firstly, when a relatively large number of simulator runs are available, a

sparse approximation can make inference practical. This is achieved by reducing the

computational time complexity to O(NM2) per simulator observation and reducing

the memory requirement. Secondly, when predictions are required at a large number



4.4. EXTENSIONS FOR GAUSSIAN PROCESSES 95

of test inputs a moderate computational saving is made, O(M) and O(M2) per test

point. Applications of when these reasons may be applicable are presented in this

section.

In the authors opinion, it is not commonplace that the simulator is run at a large

number of parameter combinations. This problem mainly arises in a high dimensional

parameter space where most of the parameters actively and significantly effect the

output. Here even a space-filled design will result in a large number of simulator

runs and a sparse GP approximation is applicable. Sparse GPs are more useful in a

Bayesian optimisation [129, 130] or Bayesian history matching setting [71, 131]. Both

methods often require predictions from the emulator for a large number of parameter

combinations in order to accurately assess the output space for optimal solutions.

The moderate computational saving in the prediction per test point means that a

better exploration of the space can be performed. This becomes more important in a

sequential design process as used in an entropy search or information gain approach

[129]. These methods often predict based on a set grid size for the parameter space;

reducing the computational load for prediction means a finer grid can be set. Due to

the approximate nature of sparse GPs their use is not always needed or favourable

for creating emulators. The approximation introduces a nugget term that cannot be

fixed as it is a coupling between a noise parameter for the data and an estimation of

the error introduced by a low rank approximation. This means that deterministic

predictions at known simulator outputs are not possible, as is the case with the

full GP emulator. This has to be considered when the code uncertainty affects the

results of additional processes, as is the case with Bayesian optimisation and Bayesian

history matching.

4.4 Extensions for Gaussian Processes

GPs have been adapted extensively throughout the literature for a variety of problems.

Several GP technologies of note are outlined briefly. These include multivariate GP

formulations, frameworks for predicting stochastic emulator outputs and techniques

for incorporating dynamics.
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4.4.1 Multivariate Gaussian Processes

Most applications involving the generation of an emulator will involve creating a

surrogate of multiple simulator outputs i.e. Y = η(X) where X = {xn}Nn=1 of

dimension D and Y = {yn}Nn=1 of dimension k. However, GPs are univariate and

therefore Eqs. (4.15) and (4.23) are formulated for a single output. The most

naive approach is to construct multiple independent univariate GP emulators for

each output. This may be valid in situations where the outputs are uncorrelated

and there is no dependence defined within the computer code between inputs and

outputs. Nonetheless, in most emulation contexts it is expected that there will be

joint correlation between the inputs and outputs as well as dependence between

outputs. This means that an independent GP prior assumption would result in a loss

of information. Outputs are often different quantities which means there is no need

for a cross-mean function term. As a consequence the adaptation from a univariate

to multivariate GP is mainly concerned with specifying a GP prior that captures the

cross-dependences in the covariance matrix, with a general multi-output GP form

defined in Eq. (4.62).

Y ∼ GP ((Ik ⊗Hη)β , Vη,η) (4.62)

Where Hη is the design matrix of p basis functions, β is a vector of kp coefficients

and Vη,η is the covariance matrix. Formulations of multivariate GPs are broadly

categorised by whether the covariance matrix is separable or non-separable.

A separable covariance matrix assumes that Vη,η = Σ c(X,X ′) which is equivalent

to Vη,η = Σ ⊗ Aη,η, where Σ is a hyperparameter [104, 132]. This structure keeps

the problem tractable and allows Σ to be marginalised out using a non-informative

Jeffreys prior. The problem with a separable approach is that only one covariance

function can be specified, this must be applicable to all outputs in the model.

Additionally, this separability means that the covariance between two outputs is zero,

meaning that observing one output will not provide information about any other

output (a kind of Markov property) [107].

A non-separable approach alleviates these problems allowing different covariance

functions for each output. Two approaches are convolution and coregionalisation

methods [107]. The convolution approach treats GPs as outputs of stable linear
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filters, where a GP is the same as convolving a smoothing kernel with a white

noise process [107, 133–135]. A covariance matrix with cross-dependent terms

and individual covariance functions for each output can be defined by summing

multiple convolutions. Per contra, the linear model of coregrionalisation sums linear

combinations of a number of independent GP models in order to create a multiple

output GP [107].

An alternative approach to the form in Eq. (4.62) is a deep GP [136]. The simplest

deep GP is for a single output where two GP models are connected, i.e. the output of

the first GP is the input to the next, where the latent function space is marginalised

out using variational inference (retaining the Bayesian Occam’s razor). The potential

hierarchy of combined GPs is deemed flexible enough to produce multiple-output

predictions [136].

4.4.2 Stochastic Emulators

The simulators considered so far have been deterministic, however certain computer

models may also be stochastic, such as stochastic FEA [137]. In this context, a

GP emulator must have a mechanism for accurately capturing the heteroscedastic

behaviour. Broadly, GP technologies for predicting heteroscedastic processes involve

two GPs; one for the mean and one for the variance. Andrianakis et al. emulate the

mean and variance as two distinctly separate GPs, incorporating the prediction of

each within a Bayesian History Matching (BHM) setting [109]. Another approach by

Lázaro-Gredilla and Titsias is to combine two GPs, with the second being introduced

as an exponentiated noise model. This formulation is no longer tractable, and leads

to the definition of a variational approximation [138].

4.4.3 Dynamical Gaussian Processes

When the simulator is predicting dynamic outputs, i.e. time histories a of particular

quantity, it may be beneficial to incorporate temporal knowledge into the GP emulator.

There are several approaches that exist within the literature, categorised broadly

into two main approaches: Autoregressive (AR) and state-space formulations. An

AR approach models the next output in a times series as some mapping from past

observations, whereas a state-space framework describes the outputs as a Markov
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process with one or more states evolving in time by means of a transition function.

Frigola-Alcalde provides a detailed overview in [139].

The AR approach leads to the formulation of a Nonlinear Auto-Regressive eXogenous

inputs (NARX) (where exogenous are external inputs) model, where previous outputs

of the model become inputs to the next time point. In the GP formulation these past

observations become part of the input set to a GP, mapping the nonlinear transition

to the next time point [139–142].

A nonlinear state-space approach can be formulated in a variety of ways [139, 143, 144].

Firstly, either the transition or observational models or both can be assumed a

GP. These prior assumptions are used to reflect the belief that the nonlinearity is

contained within either the system dynamics or the measurement respectively [139].

Additionally both the transition and observational models can be GPs (known as

the full GP-state space model), however this can lead to non-identifiability problems,

as both models are flexible nonlinear functions [139, 144]. Key challenges to this

approach are computational complexity, identifiability issues and interpretability.

4.5 Conclusion

Simulators are used throughout engineering and are an integral part of forward

model-driven SHM. The majority of statistical methods and optimisation techniques

that analyse or incorporate simulators require numerous evaluations. These methods

may not be practically feasible when the simulator is computationally expensive to

run. For this reason emulators, computationally efficient surrogates of a simulator,

are employed.

A variety of tools have been implemented as emulators throughout the literature,

notably ANNs, PCE, BLA and GPs. It has been discussed that only BLA and GPs

quantify the uncertainty associated with replacing the simulator with an emulator

— known as code uncertainty. Moreover, both ANNs and PCE can overfit, and

without providing code uncertainty the user is unaware when this occurs. BLA is an

approximation of Bayesian inference and only considers the mean and variance. In

contrast GPs have closed form solutions to Bayesian inference, when the function can

be assumed Gaussian distributed. For these reasons, when the outputs are considered

jointly Gaussian, a GP emulator will be the most rigorous form surrogate model,
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and therefore is utilised in this thesis.

The chapter has outlined derivations of a GP for the purpose of emulating a deter-

ministic simulator, along with methods for dealing with numerical issues associated

with the ‘noise-free’ assumption. In addition, diagnostics have been implemented on

a numerical example presenting a framework for validating an emulator. An emulator

must be constructed from a finite set of simulator runs, and a GMLHD has been

demonstrated to improve GP predictions.

When the number of input variables N is large, GPs can become numerically

intractable as they rely on the inversion of an N × N matrix which has a time

complexity of O(N3). Sparse GP methods have been proposed to reduce the time

complexity to O(NM2) and considerations for implementation in an emulator context

have been outlined. Finally, other GP extensions within the literature have been

presented, such as multivariate, heteroscedastic and dynamical GPs.





Chapter 5

Bayesian Calibration and Bias

Correction

In the previous chapter model discrepancy, that occurs due to model form errors,

was outlined as a problem in generating predictions from simulators that accurately

represent real world observations. This is a particular issue for forward model-driven

SHM as a key objective is to generate statistically representative outputs of observa-

tional damage states from a simulator. This means that the calibration procedures

implemented in forward model-driven SHM must consider model discrepancy as a

source of uncertainty. Bayesian Calibration and Bias Correction (BCBC) is one

such approach, seeking to calibrate simulator parameters whilst inferring the model

discrepancy functional distributions.

The following chapter begins with a discussion of the literature before outlining the

BCBC methodology. Subsequent sections demonstrate the technique on two case

studies; a three story and a five storey building structure, providing a discussion on

the benefits and challenges with the formulation. Lastly, conclusions are presented

outlining the methodologies effectiveness within a forward model-driven framework.

5.1 Literature Review

BCBC (also known as the ‘Kennedy and O’Hagan approach’ or a modular Bayesian

technique) was developed in 2001 by Kennedy and O’Hagan [68] as part of a discussion

101
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about the correct procedure for calibrating deterministic simulators in a Bayesian

manner. The key development of the paper was to outline the sources of uncertainty

within a computer simulation, highlighting that model discrepancy should be inferred,

along with parameter uncertainties, and proposing that it could be modelled using a

GP prior. Their proposed statistical model for calibrating a simulator is as defined

in Eq. (5.1).

z(x) = ζ(x) + e = ρη(x,θ) + δ(x) + e (5.1)

This statistical model provides a belief about the relationship between observations

z(x) and simulator η(x,θ) that depends on a set of inputs x and parameters θ. The

model assumes that the combination of simulator and model discrepancy δ(x) are

equivalent to the ‘true’ process ζ(x), where model discrepancy is assumed to have

a functional form. In the original formulation a regression parameter ρ is used to

weight the evidence provided by the simulator relative to the model discrepancy;

with this parameter informing the relative weighting between the model discrepancy

and simulator — although some more recent formulations remove this term. Lastly,

the observational data z(x) is modelled as the ‘true’ process with the addition of

independent observational uncertainty (a Gaussian homoscedastic noise).

The framework has been applied and adapted several times within engineering.

Bayarri et al. implemented the methodology on a spot weld FEA model where

they discuss the differences between a modular Bayesian approach and full Bayesian

analysis, stating similarities in the results [69]. Higdon et al. proposed a multivariate

formulation using principle components modelled as GPs [103]. The method was

demonstrated on a simulator modelling implosion in a cylinder, where output pre-

dictions were demonstrated to fit the data well. However, comments in the paper

indicate non-identifiability issues between the parameters and model discrepancy as

well as problems in scenarios where the simulator cannot be modelled as a standard

GP. The framework’s approach to model discrepancy is also discussed in a general

review of model updating [16] without any definitive conclusions. In engineering de-

sign, Arendt et al. present an application of the univariate method clearly indicating

the problems associated with non-identifiability between the parameters and model

discrepancy when non-informative or inadequate priors are used [105]. The issues

with non-identifiability are approached again by Arendt et al. where multivariate

GPs with separable covariances ([104]) are incorporated in order to better define
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the calibration space [132]. Nonetheless, the method did not completely solve these

problems, mainly due to numerical instabilities in the multivariate GPs. In addition,

Arendt et al. use a preposterior technique, where the GP covariance was estimated

prior to calibration using a least squares technique, in an attempt to improve the

non-identifiability issues [145]. Finally, Brynjarsdóttir and O’Hagan discussed the

importance of inferring model discrepancy and the problem of inappropriate model

discrepancy prior specification [146]. They state that the prior distribution for the

parameters must be informative where possible and the GP prior constrained to

reflect prior physical knowledge.

The literature clearly discusses the issues associated with parameter inference when a

naive GP prior is formed for the model discrepancy or uninformative priors are used

for the parameters. This is especially problematic in a model updating view of SHM

where the updated parameters are used to make inferences about the structure’s

health state. It is also problematic when extrapolation is required, resulting from

incorrect inference of the simulator parameters. On the other hand in a forward

model-driven SHM context often only interpolation of the outputs is required. This

may be possible with the BCBC framework when an unconstrained GP prior and

informative parameter priors are utilised, as the inferred parameters and model

discrepancy will be fitted to the training input domain.

5.2 Methodology

BCBC aims to calibrate the statistical model of the form described in Eq. (5.1)

using Bayesian inference, i.e. p (θ |d) ∝ p (d |θ)p (θ), where d = (yT, zT)T is a

combined data set of simulator and observational outputs. The data are obtained

from a finite set of N simulator evaluations Dy = {(x1, t1), . . . , (xN , tN)} (where t

are potential parameters where θ may be contained) and their corresponding outputs

y, in addition to a finite set of n observations z obtained at Dz = {xz1, . . . ,xzn}
(these can be different locations to the simulator inputs). It is common that N � n

as simulator evaluations are often easier to obtain than experimental data.

The likelihood function is assumed Gaussian, i.e. p (d |θ,φ) = N (md(θ),V d(θ)),

and is constructed from GP models (using Eq. (5.1)) dependent on the hyperpa-

rameters φ. Specifically the approach assumes that both the simulator η(x,θ) and

model discrepancy δ(x) can be modelled independently by GPs, defined in Eqs. (5.2)
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and (5.3) respectively — where the simulator output y = η(x,θ).

y = η(x,θ) ∼ GP (mη(x,θ) , kη ((x,θ), (x′,θ′))) (5.2)

δ(x) ∼ GP (mδ(x) , kδ (x,x′)) (5.3)

The simulator, modelled as a ‘noise-free’ GP emulator, is specified by a mean mη(·)
and covariance function kη(·, ·) with hyperparameters φη and seeks to emulate over

the input x and parameter θ space. The prior belief for the model discrepancy GP

is described by the mean mδ(·) and covariance function kδ(·, ·) with hyperparameters

φδ and describes the model discrepancy when the ‘true’ calibrated parameters θ are

known.

The prior model for the observational outputs z are constructed using Eq. (5.1). The

statistical model assumes independent, normally distributed observational uncertain-

ties N (0, σ2
n). The three components form the observational output prior defined in

Eq. (5.4).

z ∼ GP
(
ρmη(x,θ) +mδ(x) , ρ2kη ((x,θ), (x′,θ′)) + kδ (x,x′) + Iσ2

n

)
(5.4)

Which is dependent on the hyperparameters φ = {φη,φδ, σ2
n, ρ}. The joint Gaussian

likelihood p (d |θ,φ) is then formed from the mean and covariance presented in

Eqs. (5.5) and (5.6).

E (d |θ,φ) = md(θ) = H(θ)β =

[
Hη(Dy) 0

ρHη(Dz(θ)) Hδ(Dz)

]
β (5.5)

V (d |θ,φ) = V d(θ) =

[
Kη(Dy) ρKη(Dy, Dz(θ))T

ρKη(Dy, Dz(θ)) ρ2Kη(Dz(θ)) +Kδ(Dz) + Inσ2
n

]
(5.6)

Where Dz(θ) are the observation inputs Dz augmented by the ‘true’ calibrated

parameter i.e. Dz(θ) = {(xz1,θ), . . . , (xzn,θ)}; required for the evaluation of the
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emulator’s covariance function1. The identity matrix In is n× n and β are hyperpa-

rameters of the mean function (the hyperparameters β are part of the sets φη and

φδ).

The hyperparameters φ = {φη,φδ, σ2
n, ρ} for the statistical model in Eqs. (5.5)

and (5.6) are inferred either in a fully Bayesian manner or using a plug-in approach —

for reasons discussed in Section 4.2 a plug-in (empirical Bayes) method is implemented.

Within the literature it is common to approach inference of the hyperparameters φ in

a modular manner (the reader is referred to [68, 69] for a more in-depth discussion)

whereby Eq. (5.2) is fitted to a set of simulator runs to infer plug-in estimates of the

hyperparameters φ̂η. These fixed plug-in estimates of φ̂η are incorporated into the

conditional distribution p (z |y,φ) and the remaining hyperparameters {φδ, σ2
n, ρ}

are inferred. The statistical model with the plug-in estimates φ̂ — making it an

empirical Bayes approach — are subsequently utilised in Bayesian inference of the

parameters θ. Predictive posterior distributions of the output quantity can be

inferred using the parameter posterior distribution.

The modular approach is summarised as follows with the consecutive sections pro-

viding more detail on each stage:

• The simulator is run for a finite set of N inputs x (the same ∀ θ) and parameters

θ to obtain the outputs y. The plug-in estimates of the hyperparameters φ̂η

are inferred for the GP emulator prior in Eq. (5.2).

• Observational outputs z are obtained for a finite set of n inputs xz where

typically n � N . The plug-in estimates of the hyperparameters {φδ, σ2
n, ρ}

are inferred for the model discrepancy GP. This GP maps from the emulator

output — using φ̂η and with θ marginalised out — to the experimental data.

• The posterior distribution for the parameters θ are inferred using Bayesian

calibration i.e. p (θ |d,φ) ∝ p (d |θ,φ)p (θ)p (φ). Full Bayesian analysis

would require integrating out φ, however as this is intractable. The posterior

p (θ |d,φ) is therefore conditioned using the plug-in estimates φ̂ (an empirical

Bayes approach).

• The unconditional predictive posterior distribution of the observations p (z |d,φ)

is generated by integrating out the inferred posterior parameter distribution

p (θ |d,φ).
1The notation Kη(Dz(θ)) relates to the covariance function kη

(
(xz,θ), (xz ′,θ′)

)
.
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5.2.1 Emulator inference

The first stage of the modular BCBC approach is to infer the plug-in estimates of the

hyperparameters φη. This is performed by fitting a GP emulator (Eq. (5.2)) to map

the relationship between a finite set of N inputs x and parameters t — collectively

referred to as Dy = {(x1, t1), . . . , (xN , tN)} — to the simulator outputs y.

The complete specification of the GP prior in Eq. (5.2) requires the definition of a

mean and covariance function. The choice must reflect prior assumptions about the

functional form of the simulator (see Section 4.2 for more information). The mean

function mη(x, t) can be formed by any parametric basis functions that are linear in

the coefficients βη as demonstrated in Eq. (5.7).

mη(x, t) = Hη(Dy)βη (5.7)

Generally a constant mean function is used, i.e. Hη(Dy) = 1 unless prior information

about the simulator function is known. In addition, the choice of Hη(Dy) is restricted

for a closed form solution to BCBC, where the expectation with respect to parameter

prior p (θ) must be tractable.

The covariance function kη ((x, t), (x′, t′)) is chosen to reflect the prior smoothness

of the simulator function. As discussed in Section 4.2, an SE covariance function

is appropriate when the simulator output can be considered smooth, as assumed

here. This choice of covariance function also means that the expectation in relation

to a Gaussian prior for p (θ) will remain tractable, leading to a closed form solution

for marginalising the parameters from the emulator GP — required for the model

discrepancy inference stage. In addition a separable covariance structure is imple-

mented for the inputs x and parameters t. The separate covariance functions are

combined using a product (equivalent to a logical ‘AND’ statement) which reflects

their dependence. The prior ARD covariance function is presented in Eq. (5.8).

kη ((x,θ), (x′,θ′)) = σ2
η exp

(
−(x− x′)TΩx(x− x′)

)
exp

(
−(t− t′)TΩt(t− t′)

)
(5.8)

Where σ2
η is the scale factor hyperparameter, Ωx and Ωt are diagonal matrices of rough-
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ness parameters for each dimension d, grouped ψη = {Ωx,Ωt}. The computation time

in generating the covariance matrix can be increased by using the kronecker product

rules. This means that Kη = σ2
ηAt ⊗ Ax (where At = exp

(
−(t− t′)TΩt(t− t′)

)
and Ax = exp

(
−(x− x′)TΩx(x− x′)

)
, i.e. the corresponding correlation matrices).

This results in computational savings when calculating K−1
η = σ−2

η A−1
t ⊗ A−1

x and

|Kη| = σ2ntnx
η |At|nx ⊗ |Ax|nt where nt and nx are the number of parameters and

inputs respectively (i.e. N = ntnx).

The objective of this stage is to infer the plug-in estimates φ̂η = {β̂η, σ̂2
η, ψ̂η}. Using

the same weak prior approach as in Section 4.2, both βη and σ2
η can be marginalised

out, leaving the MLE estimation of ψη via optimising the NLML − log p
(
ψη |y

)
(see

Section 4.2 for full mathematical definitions and reasoning behind not marginalising

out ψη). The posterior predictions of the GP emulator p
(
η |y,ψη

)
can be obtained

using Gaussian conditionals as demonstrated in Section 4.2; this does not need to

be performed for BCBC and serves only for visualisation and emulator diagnostic

purposes.

5.2.2 Model Discrepancy and Observational Uncertainty In-

ference

The second stage of the modular BCBC approach is to infer the plug-in estimates

of the hyperparameters {φδ, σ2
n, ρ}. These need to be inferred independently of

the parameter set θ. To do this the emulator hyperparameters φ̂η are fixed and

predictions independent of θ obtained by marginalising out θ by conditioning on

the prior p (θ). This leads to a residual between the observational data and the

uncertain emulator predictions, independent of θ, with which the model discrepancy

GP is inferred.

To fully specify the observational GP model a mean and covariance function must be

defined for the model discrepancy GP. The choice of functions are more flexible than

with the emulator, as they do not have to be integrated with respect to p (θ). The

mean and covariance functions are assumed to have the form stated in Eqs. (5.9)

and (5.10).

mδ(x
z) = Hδ(Dz)βδ (5.9)
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kδ(x
z,xz ′) = σ2

δc(x
z,xz ′;ψδ) (5.10)

Where the model discrepancy hyperparameter set is φδ = {βδ, σ2
δ ,ψδ}; the mean

function coefficient, scale factor and correlation hyperparameters for the model

discrepancy GP.

In order to perform plug-in inference of the hyperparameters {φδ, σ2
n, ρ} the equation

p
(
φδ, σ

2
n, ρ |d,φη

)
∝ p (z |y,φ)p (φδ, σ

2
n, ρ) should be formed and maximised. The

distribution p (z |y,φ) cannot be calculated analytically, but p (z |y,φ,θ) is known

and normally distributed. By integrating out θ from the first and second moments of

p (z |y,φ,θ) (i.e. moment matching) an approximation of the distribution p (z |y,φ)

is obtained and utilised for inference of {φδ, σ2
n, ρ}. The marginalisation of θ from

the conditional mean function is presented in Eq. (5.11).

E (z |y,φ) =

∫
E (z |y,φ,θ) p (θ)dθ = Hδβδ + ρEθ

(
y |φη

)
(5.11)

This is prior model discrepancy mean in addition to the posterior emulator prediction

unconditioned on θ, where Eθ
(
y |φη

)
= η̂(Dz) — the expectation of the emulator

mean with respect to the prior on θ. The ith element of the mean vector is calculated

as shown in Eq. (5.12).

E (zi |y,φ) = Hδ(Dz,i)βδ + ρ

(∫
Hη(Dz,i(θ))p (θ)dθ

)
β̂η

+ ρ
(
Kη (Dz,i(θ), Dy,j)

T p (θ)dθ
)
Kη(Dy)

−1(y −H(Dy)β̂η) (5.12)

Where i = 1, . . . , n and j = 1, . . . , N . In the same manner θ is marginalised out of

the conditional covariance, Eq. (5.13).

V (z |y,φ) =

∫
V (z |y,φ,θ) p (θ)dθ = Inσ2

n +Kδ(Dz) + ρ2

∫
V
(
y |θ,φη

)
dθ

(5.13)

This is the prior model discrepancy and observational uncertainty covariance summed
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with the unconditional emulator posterior covariance, where
∫
V
(
y |θ,φη

)
dθ = C

and V = Inσ2
n + Kδ(Dz) + ρ2C. The ith, jth (n × n) element of C is shown in

Eq. (5.14).

Ci,j =

∫
Kη(Dz,i(θ), Dz,j(θ))p (θ)dθ

− tr

(
Kη(Dη)

−1

∫
Kη (Dz,j(θ), Dy,k)Kη (Dz,i(θ), Dy,l)

T p (θ)dθ

)
+ tr

(
Wη(Dη)

∫
Hη (Dz,j(θ))Hη (Dz,i(θ))T p (θ)dθ

)
− tr

(
Wη(Dη)Hη(Dη)

TKη(Dη)
−1

∫
Kη (Dz,j(θ), Dy,k)Hη (Dz,i(θ))T p (θ)dθ

)
− tr

(
Kη(Dη)

−1Hη(Dη)Wη(Dη)

∫
Hη (Dz,j(θ))Kη (Dz,i(θ), Dy,l)

T p (θ)dθ

)
+tr

(
Kη(Dη)

−1Rη(Dη)Kη(Dη)
−1

∫
Kη (Dz,j(θ), Dy,k)Kη (Dz,i(θ), Dy,l)

T p (θ)dθ

)
(5.14)

Where Wη(Dy) and Rη(Dy) are presented in Eqs. (5.15) and (5.16).

Wη(Dy) =
(
Hη(Dy)

TKη(Dy)
−1Hη(Dy)

)−1
(5.15)

Rη(Dy) = Hη(Dy)Wη(Dy)Hη(Dy)
T (5.16)

In order to perform BCBC the integrals in Eqs. (5.12) and (5.14) must be solved.

When particular forms of mean mη(·) and covariance function Kη(·, ·) for the emulator

are chosen, along with a specific prior distribution for θ, these integrals have closed

form solutions. Appendix A.4 outlines these integrals in closed form when θ ∼
N (mθ, Vθ) and a constant mean and SE covariance functions are implemented in

the emulator.

The approximation of p (z |y,φ) as a Gaussian with the unconditional mean and

covariance defined in Eqs. (5.11) and (5.13) can be used to form the marginal

likelihood shown in Eq. (5.17). This is formed by integrating out the hyperparameter

of the model discrepancy mean function βδ in Eqs. (5.18) and (5.19).
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p
(
φδ, σ

2
n, ρ |d,φη

)
∝ |V |−

1
2 |Wδ|

1
2

exp

(
−1

2

(
z −Hδβ̂δ − ρη̂(Dz)

)
V −1

(
z −Hδβ̂δ − ρη̂(Dz)

))
p
(
φδ, σ

2
n, ρ
)

(5.17)

β̂δ = WδHδ(Dz)
TV −1(z − ρη̂(Dz)) (5.18)

Wδ =
(
Hδ(Dz)

TV −1Hδ(Dz)
)−1

(5.19)

If p (φδ, σ
2
n, ρ) are Jeffrey’s priors, then the estimates {φ̂δ, σ̂2

n, ρ̂} from maximising

Eq. (5.17) are MLE estimates — in practice, as discussed in Section 4.2, this is

performed by minimising the NLML.

5.2.3 Calibration Parameter Inference

With the fixed set of hyperparameters φ̂ = {φ̂η, φ̂δ, σ̂2
n, ρ̂} obtained from the two

GP inference steps the joint Gaussian likelihood in Eqs. (5.5) and (5.6) can be

formed. This joint Gaussian likelihood is conditioned on the fixed plug-in estimates

p(d |θ,φ = φ̂). As discussed in Section 5.2 a full Bayesian analysis would require φ

to be integrated out so the posterior parameter distribution is dependent only on

the data, however this integral is intractable. One solution is to take an empirical

Bayes approach, whereby the hyperparameters are fixed at their MLE estimates φ̂,

rather than integrating them out numerically. This approach is taken here in order

to keep the technique computationally efficient.

Calibration of the parameters θ is performed using Bayesian inference where the

joint posterior distribution is shown in Eq. (5.20).

p(θ |d, φ̂) ∝ |V d(θ)|−
1
2 exp

(
−1

2
(d−md(θ))V d(θ)−1 (d−md(θ))

)
p (θ) (5.20)

As before, using non-informative priors β = {βT
η ,β

T
δ } can be marginalised out of
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Eq. (5.20) resulting in Eqs. (5.21) to (5.23) — for notational purposes the hyperpa-

rameter set becomes φ̂ = {σ̂2
η, Ω̂x, Ω̂t, σ̂

2
δ , ψ̂, σ̂

2
n, ρ̂}.

p(θ |d, φ̂) ∝ |V d(θ)|−
1
2 |W (θ)|

1
2

exp

(
−1

2

(
d−H(θ)β̂

)
V d(θ)−1

(
d−H(θ)β̂

))
p (θ) (5.21)

β̂(θ) = W (θ)H(θ)TV d(θ)−1d (5.22)

W (θ) =
(
H(θ)TV d(θ)−1H(θ)

)−1
(5.23)

Equation (5.21) can be used to make inference about θ. Despite the construction

of Eq. (5.21) full Bayesian analysis, which requires the evaluation of the marginal∫
p(d |θ, φ̂)p (θ)dθ, remains intractable due to the likelihood’s dependence on θ

(shown in Eq. (5.21)). This means that numerical methods are utilised. Here two tech-

niques are investigated, quadrature and MCMC sampling outlined in Sections 5.2.5

and 5.2.6.

5.2.4 Calibrated Predictive Posterior

The conditional distribution p(z∗ |d, φ̂,θ) for predicting n∗ new observations z∗ from

new input locations Dz∗ = {xz∗1 , . . . ,xz∗n∗} is a GP (formed from standard Gaussian

conditionals using Eqs. (5.5) and (5.6)). The posterior mean and covariance of the

GP model are presented in Eqs. (5.24) and (5.25).

E
(
z∗ |d, φ̂,θ

)
= H∗(Dz∗(θ))β̂ + V∗(Dz∗(θ))TV d(θ)−1(d−H(θ)β̂) (5.24)
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V
(
z∗ |d, φ̂,θ

)
= ρ2Kη(Dz∗(θ)) +Kδ(Dz∗)− V∗(Dz∗(θ))TV d(θ)−1V∗(Dz∗(θ))(

H∗(Dz∗(θ))−H(θ)TV d(θ)−1V∗(Dz∗(θ))
)T

W (θ)
(
H∗(Dz∗(θ))−H(θ)TV d(θ)−1V∗(Dz∗(θ))

)
(5.25)

Where the predictive design matrix and cross covariance terms are shown in Eqs. (5.26)

and (5.27) respectively.

H∗(Dz∗(θ)) =
[
ρHη(Dz∗(θ)) Hδ(Dz∗)

]
(5.26)

V∗(Dz∗(θ)) =

[
ρKη(Dz∗(θ), Dy)

ρ2Kη(Dz∗(θ), Dz(θ)) +Kδ(Dz∗, Dz)

]
(5.27)

The predictive GP from Eqs. (5.24) and (5.25) is dependent on θ. To make calibrated

predictions the unconditional predictive posterior p(z∗ |d, φ̂) is calculated by the

marginalisation integral
∫
p(z∗ |d, φ̂,θ)p(θ |d, φ̂)dθ. As a Gaussian distribution

is fully specified by its first and second moments the integral is presented using

the law of total expectation and covariance in Eqs. (5.28) and (5.29) (where EΘ (·)
and covΘ (· , ·) are the expectation and covariance with respect to the posterior

distribution p(θ |d, φ̂)).

E
(
z∗ |d, φ̂

)
= EΘ

(
E
(
z∗ |d, φ̂,θ

))
(5.28)

V
(
z∗ |d, φ̂

)
= EΘ

(
V
(
z∗ |d, φ̂,θ

))
+ covΘ

(
E
(
z∗ |d, φ̂,θ

)
,E
(
z′∗ |d, φ̂,θ

))
(5.29)

The unconditional posterior mean is formed from the integral in Eq. (5.30).
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E
(
z∗ |d, φ̂

)
=

∫
H∗(Dz∗(θ))β̂ + V∗(Dz∗(θ))TV d(θ)−1(d−H(θ)β̂)

p
(
d |θ, φ̂

)
p (θ)dθ (5.30)

The unconditional posterior covariance is formed from the integral in Eq. (5.31).

V
(
z∗ |d, φ̂

)
=

∫ [
ρ2Kη(Dz∗(θ)) +Kδ(Dz∗)− V∗(Dz∗(θ))TV d(θ)−1V∗(Dz∗(θ))(
H∗(Dz∗(θ))−H(θ)TV d(θ)−1V∗(Dz∗(θ))

)T
W (θ)

(
H∗(Dz∗(θ))−H(θ)TV d(θ)−1V∗(Dz∗(θ))

)
+

E
(
z∗ |d, φ̂,θ

)
E
(
z∗ |d, φ̂,θ

)T ]
p
(
d |θ, φ̂

)
p (θ)dθ+

E
(
z∗ |d, φ̂

)
E
(
z∗ |d, φ̂

)T
(5.31)

Again due to the intractable nature of p(θ |d, φ̂) and the predictive GP posterior,

the integrals in Eqs. (5.30) and (5.31) are solved numerically via quadrature or from

performing Monte Carlo averaging from the MCMC sampled posterior distribution.

Solving these integrals forms the unconditional posterior p(z∗ |d, φ̂) and therefore a

calibrated prediction.

5.2.5 Gauss-Hermite Quadrature

There are several quadrature methods for approximating integrals with respect

to various distributions. Gauss-Hermite quadrature is a particular form used for

approximating integrals with respect to a Gaussian distribution [147], useful for the

BCBC formulation outlined. The Gaussian quadrature integral can be approximated

as,

∫ ∞
−∞

e−x
2

f(x)dx ≈
n∑
i=1

wif(xi) (5.32)

where f(x) is the function to be integrated with respect to e−x
2

and wi and xi are a
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set of n weights and nodes. The function e−x
2

is the weight function w(x), which

is captured in the wi coefficients. The nodes xi are the roots of special orthogonal

polynomials called Hermite polynomials Hp(x). In Gauss-Hermite quadrature the

physicists’ Hermite polynomial defined in Eq. (5.33) is used which has the weights

shown in Eq. (5.34).

Hp(x) = p!

b p
2
c∑

n=0

(−1)n

n!(p− 2n)!
(2x)p−2n (5.33)

wi =
2p−1p!

√
π

p2(Hp−1(xi))2
(5.34)

Where p is the degree of the polynomial and b·c is a floor function (i.e. the lowest

integer is used). To determine these weights and nodes the Golub-Welsch algorithm

can be used [148], presented in Appendix A.5.

To evaluate an integral with respect to a univariate Gaussian distribution with a

mean µ and variance σ2 the Gauss-Hermite quadrature is transformed into Eq. (5.35).

E[f(X)] =

∫ ∞
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 f(x)dx ≈
n∑
i=1

wi√
π
f(µ+

√
2σxi) (5.35)

For the multivariate case where x is D dimensional the integral can be split into D

nested Gauss-Hermite integrals forming Eq. (5.36).

∫
N (x |µ,Σ)f(x)dx ≈

∑
i1,i2,··· ,iD

π−
D
2 wi1wi2 · · ·wiDf(µ+

√
2L(xi1 , xi2 , · · · , xiD))

(5.36)

Where L is the lower matrix of the Cholesky decomposition, where Σ = LLT.

A problem with this method is that as D increases the number of points required

grows exponentially, i.e. the curse of dimensionality. This means that the method is

most applicable in low dimensional scenarios.
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5.2.6 Markov Chain Monte Carlo

MCMC based techniques seek to obtain valid samples from intractable integrals or

posterior distributions. This is performed by generating Markov chains that have

the same stationary distribution as that of the posterior density. These methods rely

on Markov chains, which satisfy the Markov property — a set of random variables

X , for which the state Xt has a conditional distribution given all previous states

X1, . . . ,Xt−1, that depends only on the previous state Xt−1. The aim is to generate

stationary Markov chains whose equilibrium probability distributions are particular

target distributions, and therefore obtain samples from these target distributions.

The Metropolis-Hastings algorithm offers a method for constructing these Markov

chains and is outlined in Algorithm 3 [149, 150].

The algorithm, for estimating intractable posterior distributions, requires the specifi-

cation of the proposal distribution q
(
θ∗ |θi−1

)
and the known unnormalised density

(i.e. p (d |θ)p (θ)) in the acceptance kernel α(θ∗|θi−1). When the proposal distri-

bution is Gaussian distributed, i.e. N
(
θi−1, V

)
, the Metropolis-Hastings random

walk algorithm in Algorithm 1 is formed. The symmetric proposal means that the

acceptance kernel becomes the ratio of the unnormalised density for the candidate

over the previous sample in the Markov chain.

The Metropolis-Hastings algorithm samples from the proposal rather than the

posterior distribution directly. However a property of the technique is that if the

Markov chains are run long enough they will converge to sampling the target posterior

distribution. This initial period before convergence is known as burn-in — where

the Markov chain is heavily influenced by the initial state— and samples up to this

point are discarded. Another method for assessing whether the Markov chain has

sampled the posterior distribution in an adequate manner requires evaluating the

acceptance ratio — the percentage of accepted samples. The optimal acceptance

ratio depends on the geometry of the target distribution. For Gaussian proposals the

optimal asymptotic acceptance rate for a D-dimensional target distribution is 0.234

[151]. The proposal distribution should be tuned in order to approach this limit

and provide a good level of mixing in the Markov chains. Lastly the autocorrelation

of the Markov chains should be interrogated, as only the previous point should be

correlated due to the Markov property. The R̂ statistic offers another diagnostic

where the variances within- and between-multiple Markov chains are assessed, where

a large difference in these variances indicate non-convergence [149].
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Algorithm 3 Metropolis-Hastings

Set a proposal q
(
θ∗ |θi−1

)
Set θ0 . Set the initial state in the Markov Chain

for i = 1 : N do
θ∗ = q

(
θ∗ |θi−1

)
. Propose a new candidate sample

α(θ∗|θi−1) = min

{
1,

q(θi−1 |θ∗)p(d |θ∗)p(θ∗)
q(θ∗ |θi−1)p(d |θi−1)p(θi−1)

}
. Acceptance probability

ui ∼ U (0, 1)
if ui ≤ α(θ∗|θi−1) then
θi = θ∗ . Accept the sample

else
θi = θi−1 . Reject the sample

end if
end for

The standard Metropolis-Hastings algorithm has no method for incorporating in-

formation about the posterior from the accepted values in the chain. An adaptive

Metropolis algorithm provides a method for updating the proposal based on previous

accepted samples [150, 152]. The means that the process is no longer Markovian,

but still ergodic, as states in the chain do not solely depend on the previous state.

The algorithm is presented in Algorithm 4.

The algorithm requires determining an update rate k which typically will provide

higher acceptance rates and better mixing when it is low. The term εID is sometimes

incorporated to make the covariance positive definite, although ε can often be set to

0. At the first update step the covariance is calculated in the standard form, however

this becomes inefficient for other steps as the number of states increases. Instead

the covariance is calculated based on a Bayesian update of the Gaussian proposal

distribution, as presented in Eqs. (5.37) and (5.38).

Vi =
i− 2

i− 1
Vi−1 +

2.382

D(i− 1)

(
(i− 1)θ̄

i−2
θ̄
i−2T − iθ̄i−1

θ̄
i−1T + θi−1θi−1T + εID

)
(5.37)

θ̄
i

=
i− 1

i
θ̄
i−1

+
1

i
θi−1 (5.38)
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Algorithm 4 Adaptive Metropolis

Set the proposal q
(
θ∗ |θi−1

)
= N

(
θi−1, V0

)
R =chol(V0) . Cholesky decomposition of V0

Set θ0 . Set the initial state in the Markov Chain

for i = 1 : N do
θ∗ = θi−1 +Rε where ε ∼ N (0, 1) . Take a random walk

r = p(z |θ∗)p(θ∗)
p(z |θi−1)p(θi−1)

. Compute the ratio

ui ∼ U (0, 1)
if ui ≤ min(1, r) then
θi = θ∗ . Accept the sample

else
θi = θi−1 . Reject the sample

end if
if mod(i, k) = 0 then . Update step

Vi = 2.382

D
cov
(
θ0, . . . ,θi−1

)
+ εID . Update proposal variance

R =chol(Vi) . Cholesky decomposition of Vi
else

Vi = Vi−1

end if
end for

5.2.7 Numerical Example

To demonstrate the effectiveness of BCBC a numerical example is presented. Here a

simulator predicts the natural frequency ωn under varying tensions T and mass M ,

for a mass, tensioned wire system. The problem seeks to calibrate mass given the

simulator models a centrally positioned mass located between two boundaries 1m

apart (i.e. l = 1m) defined in Eq. (5.39).

η(x, θ) = ωn(T,M) =
1

π

√
T

Ml
(5.39)

The observations are collected from a mass, tensioned wire system where a = 0.2

and b = 1− 0.2, i.e. the mass is offset. This demonstrates a level of missing physics

within the process. Observations are therefore obtained from Eq. (5.40), where

e ∼ N (0, σ2
n).
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Figure 5.1: Difference between simulator and observations in the mass, tension wire
system numerical study when the simulator with the ‘true’ mass is implemented.

z(x) =
1

2π

√
T (a+ b)

M(ab)
+ e (5.40)

Figure 5.1 demonstrates the model discrepancy between the simulator and ob-

servations. In this example the noise variance was σ2
n = 0.012 and the inputs

xz = {200, 288.9, . . . , 1000}. BCBC was used to infer the parameter and predic-

tive natural frequency distributions based on the observations at xz using both

Gauss-Hermite quadrature and adaptive Metropolis MCMC methodologies.

The emulator and model discrepancy hyperparameters were inferred and fixed before

the two inference schemes, as stated in Section 5.2.3. The emulator was constructed

from an SE covariance and constant mean functions with a nugget, ν = 1 × 10−8.

The model discrepancy GP was modelled with a Matérn covariance (where p = 2)

and constant mean function. Figure 5.2 presents the inferred model discrepancy.

These predictions are only possible when the ‘true’ model discrepancy is known, as in

this numerical example, but would not be possible to visualise in most applications.

The regression parameter ρ was 1.39 indicating the simulator was weighted more

than the model discrepancy GP.



5.2. METHODOLOGY 119

Figure 5.2: Inferred model discrepancy using BCBC for a mass, tensioned wire
system. The shaded region indicates ±3σ.

For both techniques a prior for the mass was set as N (6, 1)kg. Gauss-Hermite

quadrature used 20 nodes and weights. The adaptive Metropolis algorithm was

implemented with an update step size of 100. The burn in period was 1000 samples

after which 10,000 posterior samples were obtained. The Markov chain was checked

for ergodicity. The inferred parameter distributions from both approaches are

presented in Fig. 5.3. Here it can be seen that the posterior distributions estimated

by both the Gauss-Hermite quadrature2 and adaptive Metropolis algorithms produce

qualitatively similar distributions. The ‘true’ value is well within the modal mass of

the two distributions, with the difference between the two statistical modes and the

‘true’ value being 0.07kg and 0.56kg for the Gauss-Hermite quadrature and adaptive

Metropolis algorithms respectively. This shows that the methodology correctly

identified the parameter in this case and that the Gauss-Hermite quadrature method

performs better for this example.

Finally the predictions of natural frequency using the two inference approaches are

shown in Fig. 5.4. 20 sets of test data were obtained for 100 equally spaced inputs,

xz∗ ∈ [200, 1000]. The NMSE of the predictions at xz∗ from both approaches were 0.22,

2Due to implementation issues the Gauss-Hermite quadrature method produces a posterior
distribution with an area less than one. To make this a valid PDF the posterior is scaled to sum to
one.
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Figure 5.3: Posterior distributions using BCBC for a mass, tensioned wire system.
Here GH stands for Gauss-Hermite and the adaptive Metropolis algorithm denoted
MCMC.

demonstrating very good agreement in the mean prediction and that both inference

schemes produce the same mean prediction.

The same numerical problem was repeated with σ2
n = 0.12 to assess the methods

robustness to noise. The natural frequency predictions for BCBC using Gauss-

Hermite quadrature are presented in Fig. 5.5a. It can be seen that the predictions

have captured the increased noise, reflected in a NMSE of 1.59. However the

parameter posterior distribution, displayed in Fig. 5.5b, is slightly further from the

true value with a modal value of 5.89kg; although well within the probability mass.

The simulator was again weighted highly as ρ = 1.31, similar to the inferred value

when σ2
n = 0.012. These results indicate that non-identifiability issues become more

pronounced in high noise scenarios. A potential solution would be to use multiple

repeats for each observation in training, however this may not be practical for a

forward model-driven SHM scenario.
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(a) (b)

Figure 5.4: Predictions of natural frequency using BCBC for a mass, tensioned wire
system. Panel (a) are the predictions using Gauss-Hermite quadrature and (b) using
adaptive Metropolis MCMC. The shaded regions indicate ±3σ.
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Figure 5.5: Predictions of natural frequency using BCBC for a mass, tensioned wire
system where σ2

n = 0.12. Panel (a) are the predictions of natural frequency and (b)
the posterior parameter distribution using Gauss-Hermite quadrature. The shaded
region in panel (a) indicates ±3σ.
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5.3 Representative Three Storey Building Case

Study

BCBC and Bayesian calibration (without bias correction) were performed on a

representative three storey building as an experimental case study. The aim was to

indicate the improved accuracy of BCBC for forward model-driven SHM over con-

ventional Bayesian calibration. Modal testing of the structure, presented in Fig. 5.6,

was performed for nine damage extents — crack lengths of xz∗ = {0, 2.5, . . . , 20}mm

in the front right beam in Fig. 5.6 — and the first three bending natural frequencies

obtained. The structure was excited with broadband white noise via an electrody-

namic shaker and the acceleration response measured at each of the three floors.

Five repeats were obtained for each damage scenario. The third natural frequency

was the most sensitive to damage and therefore used as the damage feature in this

analysis. The experimental training data were five repeats when x = {0, 5, 20}mm —

chosen to indicate the methods effectiveness for identifying the functional form from

a small number of observations. The validation data set included all five repeats for

the nine damage extents.

The simulator was a modal FEA model where the saw cut was modelled geometrically,

i.e. the geometry of the saw cut was included in that of the beam. The elastic modulus

E was included in the calibration process. This meant that simulator evaluations for

training the emulator were obtained at x = xz∗ and t = {65, 66, . . . , 71}GPa due to

a prior elastic modulus of E ∼ N (68, 0.1)GPa.

Figure 5.6: Experimental setup for the representative three storey building structure.
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(a) (b)

(c)

Figure 5.7: Predictions of natural frequency using BCBC and Bayesian calibration
for a three storey building structure. Panel (a) and (b) are BCBC predictions using
Gauss-Hermite quadrature and adaptive Metropolis MCMC respectively. Panel (c)
demonstrates Bayesian calibration using adaptive Metropolis MCMC. The shaded
regions indicate ±3σ.

BCBC was performed using both the Gauss-Hermite quadrature (20 nodes and

weights) and adaptive Metropolis MCMC inference methods. These results were

compared to Bayesian calibration using a Gaussian likelihood with an unknown noise

variance. The noise variance had a Gaussian prior, σ2
n ∼ N (0.0044, 0.0001) where

the mean was estimated from the variance of training observations V (z(x)). A GP

emulator, fitted to the same simulator training data, was used to assess the likelihood

— where the likelihood covariance was the summation of the emulator covariance and

a diagonal matrix of σ2
n, i.e. Iσ2

n. Inference was performed using adaptive Metropolis

MCMC for the Bayesian calibration approach.

For both the Bayesian calibration and BCBC approaches the adaptive Metropolis

MCMC parameters were 50, 000 posterior samples after a 1000 sample burn in and an
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Figure 5.8: Posterior distributions for a three storey building structure using BCBC
via Gauss-Hermite quadrature (BCBC-GH), adaptive Metropolis MCMC (BCBC-
MCMC), and Bayesian calibration (BC) methods.

update step size of 100. The initial proposal variance for BCBC was 0.1 for the elastic

modulus. On the other hand, the proposal covariance for Bayesian calibration had

zero cross-covariance terms with a proposal variance of 0.02 for the elastic modulus

and 0.01 for the noise variance. All these approaches defined an emulator with

constant mean and SE covariance functions with a nugget ν = 1× 10−8. The BCBC

methods were implemented with a model discrepancy prior defined by constant mean

and Matérn (where p = 2) covariance functions.

The predictive distributions of the third natural frequency for all three approaches

are displayed in Fig. 5.7. Here it can be seen that all three approaches have captured

the trend of natural frequency with increased saw cut size, with the validation data

lying within three standard deviations. The NMSE of the mean predictions for

BCBC were both 8.07 compared to 12.34 for Bayesian calibration.

The inferred posterior parameter distributions are shown in Fig. 5.8. It can be seen

that both the Gauss-Hermite quadrature and adaptive Metropolis MCMC methods

produce similar posterior distributions. The variance of these distributions is large

compared to the prior, and larger than the inferred posterior distribution from the

Bayesian calibration approach. This difference between the BCBC and Bayesian
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Figure 5.9: Validation metrics for natural frequency predictions from the three
storey building case study. Panel (a), (b) and (c) demonstrate the area metric, total
variation and Hellinger distances when compared to Gaussian representations of the
observation data. Each panel demonstrates the distances for BCBC using Gauss-
Hermite quadrature (BCBC-GH), adaptive Metropolis MCMC (BCBC-MCMC), and
Bayesian calibration (BC) methods.

calibration posterior distributions is likely due to the omission of model discrepancy

uncertainty in the Bayesian calibration formula, producing overconfident results. The

regression parameter ρ was inferred as 0.08 from the BCBC approach, indicating

model form errors due to a low weighting. This understanding should lead to model

improvement where ρ should subsequently increase, reflecting a simulator that better

captures the physics. It can be seen in Fig. 5.7c that these model form errors exist,

noted by the functional difference between the 0 and 2.5mm damage extents, leading

to under-estimation of the mean for other damage extents.
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Method 0.0mm 2.5mm 5.0mm 7.5mm 10.0mm
BCBC-GH 0 0 0 0 0

BCBC-MCMC 0 0 0 0 0
BC 0 1 1 1 1

Method 12.5mm 15.0mm 17.5mm 20.0mm
BCBC-GH 0 1 1 0

BCBC-MCMC 0 1 1 0
BC 0 0 1 0

Table 5.1: KS-test results for the three storey case study where α = 0.05. The
hypothesis tests were applied to the BCBC using Gauss-Hermite quadrature (BCBC-
GH), adaptive Metropolis MCMC (BCBC-MCMC), and Bayesian calibration (BC)
predictions.

Hypothesis testing using the KS-test (and a significance level α = 0.05), shown in

Table 5.1 revealed that all output predictive distributions for BCBC, using both

the Gauss-Hermite quadrature and adaptive Metropolis MCMC, produced the same

hypothesis test results. This demonstrates the similarity in inference approximations.

The null hypothesis was rejected for the 15.0 and 17.5mm damage extents only,

stating a good predictive performance. The rejection of the null hypothesis for these

predictions is likely due to an offset in mean prediction, as shown in Fig. 5.7a and

Fig. 5.7b. In contrast, five damage state predictions using Bayesian calibration had

significant statistical differences leading to a rejection of the null hypothesis. This

indicates the issues due to model form errors, which are visually present in Fig. 5.7c.

The area metric, total variation and Hellinger distances were quantified and dis-

played in Fig. 5.9. The area metric shows the large distances for the Bayesian

calibration predictions in the first five damage extents, compared with the BCBC

approaches. The total variation and Hellinger distances indicate quite even predictive

quality between all three methods, with BCBC using adaptive Metropolis MCMC

slightly outperforming the other two approaches. As a result it can be determined

that although improvements are evident from both BCBC methods over Bayesian

calibration alone, they are not consistently better across all individual damage states.
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5.4 Representative Five Storey Building Case Study

A second case study where a representative five story building structure was subject

to pseudo-damage, via masses attached to the first floor, was calibrated using BCBC.

This demonstrates that BCBC is applicable for multiple parameter calibration,

typical in forward model-driven applications. The experimental structure made

from aluminium 6082, displayed in Fig. 5.10, was subject to modal testing for six

different masses, m = {0, 0.1, . . . , 0.5}kg, with the first five bending modes extracted.

Gaussian white noise, with a bandwidth of 409.6Hz and a chosen frequency resolution

of 0.05Hz was implemented in exciting the structure via an electrodynamic shaker,

with accelerators placed at each of the five floors. 40 averages were obtained for each

measurement with ten repeats at each damage extent.

The observational training data included three mass scenarios xz = {0, 0.3, 0.5}kg,

where only the first two (out of the ten repeats) were used to form the training

set z(xz). The remaining observations were incorporated in a validation set z(xz∗).

This reduced training data set demonstrates the ability of BCBC to capture the

functional behaviour with a small subset of damage state data. The simulator η(x, t),

a modal FEA model, modelled the five bending natural frequencies under the six

damage extents x = {0, 0.1, . . . , 0.5}kg — displayed in Fig. 5.11. The FEA model

did not model the complete bolted joint but simplified the joints by defining the

each beam as fixed to each floors; adding an element of known model discrepancy.

(a) (b)

Figure 5.10: Representative five storey building structure. Panel (a) show the test
setup and panel (b) presents an example of the pseudo-damage, added masses, applied
to the first floor.
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Figure 5.11: FEA model of the representative five storey building structure.

A fifty point, three dimensional GMLHD was constructed such that an emulator

could be established over the parameter t space; where the parameters were elastic

modulus E, Poisson’s ratio ν and density ρ. Prior beliefs for each of these parameters

were E ∼ N (75, 1), ν ∼ N (0.32, 0.0001) and ρ ∼ N (2800, 1000), reflecting typical

properties of aluminium 6082.

Each of the five natural frequencies were calibrated using independent BCBC models

with the same input properties. The emulators were constructed from constant mean

and SE covariance functions with a nugget, ν = 1×10−8. The model discrepancy GP

priors were constant mean and Matérn covariance (where p = 2) functions. Inference

was performed via adaptive Metropolis MCMC where 10000 posterior samples were

obtained after a 1000 sample burn in and an update step at ever 100 accepted

samples.

The five natural frequency predictions are displayed in Fig. 5.12 where the NMSEs

were 176.73, 0.07, 0.01, 0.02, 0.11 and the log posterior likelihoods 210.6, 201.4, 273.2,

222.2, 260.0 respectively. These results show that the mean trend was captured

for the second to fourth natural frequencies and indicate poor mean predictions for

the first natural frequency. This is likely due to relatively low signal information

being contained within the observation data and that no information about the

mean for the 0.1 and 0.2kg damage states was contained within the training data.

In contrast the log posterior likelihoods state that the validation data for all five

natural frequencies could plausibly have been generated from the BCBC predictive
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(a) (b)

(c) (d)

(e)

Figure 5.12: Predictions of natural frequency using BCBC for a five storey building
structure. Panel (a), (b), (c), (d) and (e) are the first, second, third, fourth and fifth
natural frequencies respectively. The shaded regions indicate ±3σ.
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distributions.

In addition, Fig. 5.13 presents the inferred posterior parameter distributions. Quali-

tatively these distributions for elastic modulus, Poisson’s ratio and density are very

similar for the five natural frequencies, informing that the BCBC inferences are con-

sistent. Furthermore, the regression parameter for each of the five natural frequency

predictions were 0.30, 0.75, 1.03, 1.20, 1.64 which can be interpreted as stating the

simulator performance is poorest for the first natural frequency with the second

natural frequency also indicating problems. The third to fifth natural frequencies are

adequately capture by the simulator and therefore have been weighted more highly.

This information should result in improved model development targeting the first

and second natural frequencies.

Hypothesis testing using both KS- and MMD two sample tests were performed to

assess whether the observations could plausibly have been drawn from the predicted

distributions, with a significance level α = 0.05. 100 repeats of the MMD hypothesis

test were performed (due to the predictive distributions being sampled ten times)

for this particular test. Both the KS- and MMD hypothesis tests fail to reject the

null hypothesis for 50% and 50.3% of the predictions (where ≥ 0.5 is considered a

rejection of the null hypothesis for the averaged MMD tests). This demonstrates a

relatively good prediction quality. Moreover, the two types of hypothesis test present

relatively consistent results further weighting the hypothesis tests conclusions.

Finally distance metrics were applied in order to quantify the differences between the

observational and predictive distributions (where either empirical CDFs or KDEs

were used). Figure 5.14 displays the area metric, total variation, Hellinger and

averaged MMD distances (from 100 repeats). The area metric for all the predictions

are low, ≤ 5× 10−3Hz, indicating a good prediction quality. Consistently across all

the distance metrics, damage states 0.1 and 0.2kg for the first natural frequency

show large distances. This is due to the mean offset in the predicted distributions.

Hellinger, total variation and MMD distances show similar distance patterns between

natural frequencies and the damage states. These distances inform that the 0.4kg

state for the second natural frequency has a large distance between the predicted

and observed distributions. This can be seen in Fig. 5.12b with the small offset in

the predictive mean.
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Figure 5.13: Posterior parameter distributions using BCBC for a five storey building
structure. Panel (a), (b), (c), (d) and (e) are the first, second, third, fourth and fifth
natural frequencies respectively.
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Figure 5.14: Statistical distances applied to the predictions from BCBC on the five
storey building structure. Panel (a) is the area metric when compared to an empirical
ten point observational CDF. Panel (b) and (c) are the total variation and Hellinger
distances when compared to KDEs of the observational data. These three distance
metrics have been calculated via numerical integration. Panel (d) is the averaged
MMD distance over 100 repeats of ten samples from the predictive distribution.
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Output 0.0kg 0.1kg 0.2kg 0.3kg 0.4kg 0.5kg
ω1 0 1 1 0 0 0
ω2 1 1 0 1 1 0
ω3 1 0 1 1 0 1
ω4 1 0 1 1 0 1
ω5 0 1 0 0 0 0

Table 5.2: KS-test results for BCBC on the five storey building case study where
α = 0.05.

Output 0.0kg 0.1kg 0.2kg 0.3kg 0.4kg 0.5kg
ω1 0.80 1.00 0.99 0.18 0.74 0.21
ω2 0.64 0.56 0.34 0.73 0.96 0.05
ω3 0.15 0.12 0.42 0.52 0.06 0.36
ω4 0.47 0.29 0.55 0.86 0.12 0.54
ω5 0.21 0.86 0.56 0.08 0.08 0.22

Table 5.3: MMD two sample test results for BCBC on the five storey building case
study where α = 0.05. Results are the average over 100 repeats of ten samples
from the predictive distribution, using a bootstrap approach with ten shuffles and a
squared exponential kernel where the hyperparameters are determined by a median
heuristic.

5.5 Conclusion

BCBC has been demonstrated on several case studies in order to determine the

methods applicability for forward model-driven SHM. The method has been shown

to adequately correct model form errors in order to produce more statistically

representative prediction than Bayesian calibration alone. Two inference methods

have been demonstrated, Gauss-Hermite quadrature and adaptive Metropolis MCMC,

which have been shown to be comparable in predictive quality.

Within a numerical case study increased noise was demonstrated to lead to misidentifi-

cation of the parameter distribution, problematic if the inferred posterior distribution

is used to inform other modelling steps within a forward model-driven strategy. Con-

sequentially, the technique is most applicable in scenarios where either informative

prior parameter information is known, or when the parameter distributions are not

used to inform further modelling, i.e. only representative prediction are required.

These findings agree with the conclusions of previous authors where the flexibility

of the model discrepancy GP will lead to improved predictive quality but does not
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guarantee correct parameter inference without strong prior information.

Further research should be conducted to see if there are improvements in predictive

quality when multivariate GP priors are implemented (for both the emulator and

model discrepancy). Subsequently, constraints on the model discrepancy GP should

also be applied when known, unfortunately these constraints may be difficult to

define in many applications.

A strength of the BCBC approach is that the regression parameter informs the level

of model error, where below one states model form issues. This should be investigated

within a simulator improvement strategy where the regression parameter identifies

the parts of the simulator to target. On the other hand, a disadvantage of the

approach is that the model discrepancy GP can only be visualised when the model

discrepancy is known for the training data. This can be a limitation in knowing

functionally how to improve the simulator.



Chapter 6

Bayesian History Matching

This chapter proposes an alternative approach to calibrating (or pre-calibrating)

simulators whilst accounting for model discrepancy, namely BHM. The technique

provides an alternative framework from standard Bayesian inference, is ‘likelihood

free’, and can be seen as a special case of Approximate Bayesian Computation (ABC).

BHM aims to reduce the parameter space by identifying and discarding simulator

parameter combinations that were unlikely to have produced the observational

outputs given the considered uncertainties.

The methodology is extended by considering techniques for incorporating sequential

design of experiments within BHM using heuristics adapted from Bayesian opti-

misation. In addition, importance sampling based techniques are developed for

inferring model discrepancy. This novel approach allows BHM to perform model

discrepancy inference making it a competitive alternative to BCBC, whilst separating

out parameter and model discrepancy inferences.

This chapter begins with a review of the BHM literature before outlining and

extending BHM on numerical examples. A case study, using a five storey building

structure is subsequently presented where the methodology for inferring model

discrepancy via importance sampling is detailed and demonstrated. The results are

validated before conclusions are provided.

135
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6.1 Literature Review

History matching is a term that originates from the oil industry and describes

methods that find parameters of simulators where the outputs closely match data from

historical reservoir production. Many approaches within the literature using history

matching as a term, as reviewed by Oliver and Chen [153], are similar to classical

model updating techniques that are well-established within the SHM community [9].

Nonetheless, Craig et al. adapted the idea of history matching outlining a Bayesian

methodology that searched for all, rather than a single parameter match [67] and

defined this class of approaches as BHM. It is this form of history matching that is

discussed within this chapter.

BHM begins by defining some form of criteria and metric for determining whether

parameter combinations θ are implausible, and not likely to have produced known

observations z. By discarding the implausible parameter space θI ∈ θ the approach

has a similar objective to calibration methods in that the remaining non-implausible

space θnI ∈ θ (parameters that provide acceptable matches given the criteria) are

identified. The technique does not naturally provide a distribution over the non-

implausible parameter set, however as described in Section 6.2.1, an approximation

can be obtained. A key strength of the approach is, that by being ‘likelihood free’

inputs and outputs of the model can be included and excluded from each iteration

without invalidating the analysis. This makes the technique a useful pre-calibration

tool for a likelihood based calibration, such as MCMC based approaches, and can

aid non-identifiability problems by informing more informed prior distributions.

BHM has been formulated and applied to a variety of applications from its origins

in oil reservoir modelling [67] to understanding Galaxy formation [96, 154, 155],

complex social models of HIV transfer in populations [71, 109] and climate science

[156, 157]. In order to make the approach computationally efficient emulators are

often implemented with common choices being GPs [71] and Bayes linear techniques

[96, 155].

6.2 Methodology

BHM seeks to calibrate a statistical model of the form shown in Eq. (6.1).
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zj(x) = ηj(x,θ) + δj + ej (6.1)

Where zj(x) is the jth observational output given inputs x, ηj(x,θ) is the jth

simulator given x and parameters θ. The model discrepancy and observational

uncertainty are δ and e respectively. The model assumes that the simulator, model

discrepancy and observational uncertainty are independent and does not seek to

define the model discrepancy’s functional form.

In order to calibrate Eq. (6.1) the parameter space of the simulator is explored in

iterations called waves. During a wave simulator outputs are assessed for parameter

combinations and discarded based on a metric and threshold. This process would be

prohibitively computationally expensive in most applications if simulator runs were

required for each proposed parameter combination. To reduce this computational

burden an emulator is implemented, with common techniques being GPs [71] and

Bayes linear [96, 155] emulators — here for the reasons outlined in Section 4.1 a GP

is utilised. The GP emulator is constructed as in Eq. (6.2).

ηj(x,θ) ∼ GPj (m(x,θ) , k((x,θ), (x′,θ′))) (6.2)

The predictive GP emulator mean E (GPj (x ,θ)) allows efficient assessment and ex-

ploration of the parameter space whilst also quantifying code uncertainty, Vc(x,θ) =

V (GPj (x ,θ)). The formulation stated in Eq. (6.2) assumes univariate GP emulators

for each output, however multivariate GPs could be implemented (see Section 4.4.1

for details).

BHM employs a quantity that assesses the dissimilarities between observations and

simulator outputs. A common metric is implausibility, which is the distance between

observations and simulator outputs, weighted by the process’s uncertainties, defined

in Eq. (6.3).

Ij(x,θ) =
|zj(x)− E (GPj (x ,θ))|

(Vo,j + Vm,j + Vc,j(x,θ))1/2
(6.3)

Where, Vo, Vm and Vc(x,θ) are the variances associated with the observational,

model discrepancy and code uncertainties. By including code uncertainty Vc(x,θ)

into Eq. (6.3) parameter space is retained if the emulator variance is high for a
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particular parameter combination, meaning that space is not discarded until the

emulator is more certain that it accurately represents the simulator in that region.

The observational uncertainty Vo can often be estimated from expert knowledge

and from the observational data. Model discrepancy uncertainty Vm can be more

challenging to define, but should be elicited from expert judgement; sensitivity

analysis can be performed during a wave to understand changes in rejection rates.

Observational and model discrepancy uncertainties can be dependant on both inputs

x and outputs zj(x), i.e. Vo,j(x) and Vm,j(x), if input dependent hetroscedastic noise

or model discrepancy are hypothesised.

The implausibility metric presented in Eq. (6.3) provides a quantity for every pa-

rameter combination, input and output, however a single value is required for each

parameter combination in order to decide whether it should be removed. Several

extensions of the implausibility metric that deal with multiple outputs and inputs

can be considered. Firstly, a maximum implausibility can be formed, whereby the

worst case for a given parameter combination is used, defined in Eq. (6.4).

Imax(θ) = arg max
j

(
arg max

xi

Ij(x,θ)

)
(6.4)

The other approach is to form a multivariate implausibility metric for either the

inputs or outputs, Eqs. (6.5) and (6.6). This is equivalent to taking the Mahalanobis

distance, standard practice in outlier analysis [158], which assesses the euclidean

distance of the principle components. Again a maximum can be taken over either

Eqs. (6.5) and (6.6) to collapse the metric to a single value for each parameter

combination.

Imulti(θ)j = (zj(x)− E (GPj (x ,θ)))T

(Vo,j + Vm,j + Vc,j(x,θ))−1 (zj(x)− E (GPj (x ,θ))) (6.5)

Imulti(x,θ) = (zj(x)− E (GPj (x ,θ)))T

(Vo,j + Vm,j + Vc,j(x,θ))−1 (zj(x)− E (GPj (x ,θ))) (6.6)
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In order to decide which parts of the parameter space to exclude a decision should

be made based on the implausibility metric, often taking the form of a threshold

T . Large implausibilities (for each formulation) indicate a parameter set was very

unlikely to have produced an output that matched the observational data, given the

included uncertainties. A rejection criteria can be formed for a particular parameter

combination θ as in Eq. (6.7).

I(θ)

≤ T if θ ∈ θnI ,

> T if θ ∈ θI
(6.7)

The threshold value depends on the type of implausibility metric being considered.

Andrianakis et al. state that a sensible threshold T for single Ij(x,θ) or maximum

Imax(θ) implausibilities (where the maximum is of a single implausibility set) can

be determined by Pukelsheim’s 3σ rule [71]. The rule states that any continuous

unimodal distribution will contain at least 99.5% of probability mass within three

standard deviations away from the mean [159]. For multivariate implausibilities the

threshold T can be set as a high percentile (α > 95%) from a chi-squared distribution

with either j, or the input size of x, degrees of freedom [71], i.e. T = F−1
χ2 (α) the

output from a chi-squared quantile function (inverse CDF). This can be thought of

as performing a frequentist hypothesis test on the parameter combination, using a

chi-squared (χ2) test.

Furthermore, the algorithm requires a method for sampling the parameter space in

order to assess the criteria. A simple approach is to draw samples from a uniform

distribution bounded by the initial parameter domain. This works effectively with

a LHD based approach. In this scenario the initial parameter space bounds are

used, in conjunction with a simulator budget, to construct a LHD — here GMLHD

from Section 4.2.3 are implemented. An emulator is constructed from the simulator

runs and its output assessed at parameter combinations sampled from a uniform

distribution where the bounds are from the parameter domain. A set of these sample

parameters can then be rejected based on the given metric and criteria, and the

bounds of the non-implausible region determined. A new wave can then be run with

a LHD constructed from the new bounds.

Finally, a stopping criteria is constructed, based on two outcomes; all the space is

deemed implausible or the emulator variance in the non-implausible region is less

than the remaining uncertainties, i.e. Vc,j(x,θnI) < Vo,j + Vm,j, which indicates
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Algorithm 5 Bayesian History Matching for Wave k

θk ∼ GMLHC . Draw parameters from GMLHC
yk = η(x,θk) . Run the simulator at parameters
Draw n samples θks ∼ U

(
min(θk),max(θk)

)
. Sample parameter space

for j = 1 : no. of outputs do
Train and validate GPj

(
x ,θk

)
. Train and validate emulators[

E
(
GPj

(
x ,θks

))
, Vc,j(x,θ

k
s)
]

= GPj
(
x ,θks

)
. Predictions at n samples of θk

Calculate Ij(x,θ
k
s) . Assess implausibility of samples

end for
Calcualate Imax(θ

k
s)

for m = 1 : n do
if Imax(θ

k
s,m) < T then

θknI = θks,m . Keep non-implausible samples
end if

end for
bounds = [min(θknI),max(θknI)] . Obtain new GMLHC bounds
if any (V k

c,j(x,θ) < (Vo,j + Vm,j)) or isempty(θknI) then
Stop . Stop if stopping criteria are met

end if

that the emulator is at least as certain about its predictions as the modeller is with

the uncertainties due to model discrepancy and observation variability. The stated

approach to BHM can be defined in Algorithm 5.

To illustrate BHM Algorithm 5 is applied to a simple numerical example (where

the sampling stage is replaced with a uniform grid). In the example a simulator

constructed from Eq. (6.8) models the experimental observation z, which is obtained

from the ‘true’ process with noise, stated in Eq. (6.9); where e ∼ N (0, 0.05). The

observation z(0.9) = 3.39 has observational and model discrepancy uncertainties,

Vo = 0.05 and Vm = 0.04 (estimated from the residual variance V ((z − e)− y)).

y = η(θ) = 5.5 (0.15 cos(2π × 0.75θ) + 1.25 sin(2π × 0.1θ)) (6.8)

z(θ) = y(θ)− 0.3 sin(2π × 0.15θ) + e (6.9)

Figure 6.1 presents the experiential data point z(0.9) = 3.39 with ±
√
Vo intervals

(shaded region) against the simulator and bias corrected outputs (i.e. z − e) across

the parameter space θs = {−0.5, 0.005, . . . , 5} where a budget of four simulator
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Figure 6.1: Simulator, model discrepancy and observational data (where the shaded
region is ±

√
Vo + Vm) for BHM numerical example. Where the inital simulator runs

are (·).

evaluations have been performed in a space-filling manner θ1 = {0.75, 1.25, 1.75, 2.25}.
The observation z = 3.39 can be formed from two parameter 0.90 and 4.23 indicated

by the cross-over in Fig. 6.1.

BHM was performed following Algorithm 5 with a simulator evaluation budget of four

(for each space-filled design in wave k) where the single implausibility metric I(θ)

and threshold T = 3 are implemented. The emulator for each wave was constructed

from a constant mean and SE covariance functions with ν = 1 × 10−8. The first,

second and fourth waves are shown in Fig. 6.2.

In the first wave (Fig. 6.2a) the emulator predictions are most uncertain outside of

θ1 leading to these regions being classified as non-implausible. It can also be seen

that the initial known simulator runs are deemed implausible, which can be visually

confirmed as they are not within the remaining uncertainty bounds z ±
√
Vo + Vm.

Between these known simulator runs the code uncertainty increases leading to the

parameter, around 1 and 2, being classed as non-implausible. By the second wave

(Fig. 6.2b) additional simulator runs mean that the code uncertainty in the [0.75 2.25]

interval are reduced below the remaining uncertainties and all judged as implausible.

Simulator runs at the parameter bounds pin the code uncertainty removing the
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(a) (b)

(c)

Figure 6.2: BHM waves k = 1, 2, 4 for the numerical example. Top panels show
the observational data with ±

√
Vo + Vm shaded region against the simulator and

emulator predictions (where the shaded regions indicates ±3σ), trained using the
simulator runs η(θk) (·). The bottom panels show the implausibility I(θks) against
the threshold T = 3, where green regions are non-implausible and red implausible.
Panel (a), (b) and (c) show waves k = 1, 2, 4 respectively.

domain edges as implausible. By the final wave (k = 4) the code uncertainty has

reduced across the space, and is lower than the remaining uncertainties in the non-

implausible region. The non-implausible set θnI at this wave clearly contain two

regions around the solution 0.90 and 4.23.

Parameter Domain Sampling

BHM relies on sampling the parameter domain during each wave in order to evaluate

the implausibility criterion. In Algorithm 5 a uniform sampling approach is suggested,

however this may not be the most efficient method as samples may be wasted in space
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that can be described as confidently implausible. Improvements to the techniques

efficiency can be made by a more optimal approach to sampling the parameter

domain, weighted to sample around the immediate non-implausible space.

One such approach is to calculate the non-implausible samples from the simulator

evaluations (or samples from the previous wave) and to define a Gaussian distribution

centred on these points where the variance is defined such that a small percentage are

non-implausible [71]. By sampling Ns times from each of the Gaussian distributions,

new parameter samples can be generated that should be sufficiently different from

the old samples (as long as the variance is defined such that there are low non-

implausibility rates). From these samples a set can be selected as the parameter

samples for that wave based on a given simulator budget. Other proposed methods

include evolutionary Monte Carlo aimed at producing uniform designs in subregions

of the parameter space [160].

Alternatively the problem of where to sample in the parameter domain can be

formed as a sequential process. This idea would involve defining a transition model

between each wave using the non-implausible metric as an approximate likelihood.

Subsequently a Sequential Monte Carlo (SMC) approach could be used to transfer

information about where to sample in each wave via propagated samples based on

their path directories, forming an SMC-BHM technique.

6.2.1 Approximate Posterior Sampling

The aim of applying BHM within forward model-driven SHM is to obtain calibrated

parameters in a process that accounts for model discrepancy. In this application it

is important that the posterior distributions of the parameters given observational

data p (θ | z) are obtained. Importance sampling can be implemented at the end of

the final wave as a method for obtaining an approximation to p (θ | z).

Importance sampling states that an unbiased estimate of the expectation integral

can be formed form as shown in Eq. (6.10).

Ep (f(x)) =

∫
f(x)p (x)dx =

∫
q (x)

(
f(x)p (x)

q (x)

)
dx = Eq

(
f(X )p (X )

q (X )

)
(6.10)
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Where X ∼ q are independent draws from a proposal distribution. Given that X are

discrete variables the expectation is equivalent to Eq. (6.11).

Ep (f(x)) ≈ 1

n

n∑
i=1

f(X )p (X )

q (X )
=

1

n

n∑
i=1

f(X )w(X ) (6.11)

Where the ratio p (X )/q (X ) = w, a set of importance weights.

When p (x) is unknown but the unnormalised distribution is, i.e. pun(x) = Zp p (x)

(where Zp =
∫
pun(x)dx is the normalising constant), then importance sampling can

be formed with an unnormalised proposal, i.e. qun(x) = Zq q (x). In this scenario

the estimator is as formed in Eqs. (6.12) and (6.13).

Ep (f(x)) =

∫
q (x)

(
f(x)p (x)

q (x)

)
dx =

Zq
Zp

∫
q (x)

(
f(x)pun(x)

qun(x)

)
dx (6.12)

Ep (f(x)) ≈ Zq
Zp

1

n

n∑
i=1

f(X )pun(X )

qun(X )
=
Zq
Zp

1

n

n∑
i=1

f(X )wun(X ) (6.13)

Where the unnormalised weights are wun(X ) = pun(X )/qun(X ) and X ∼ qun. The

ratio of normalising constants Zp/Zq can also be approximated by importance

sampling, as in Eq. (6.14) leading to Eq. (6.15).

Zp
Zq

=
1

Zq

∫
pun(x)dx =

∫
q (x)

pun(x)

qun(x)
dx ≈ 1

n

n∑
i=1

wun(X ) (6.14)

Ep (f(x)) ≈
1
n

∑n
i=1 f(X )wun(X )

1
n

∑n
i=1w

un(X )
(6.15)

Using this form the technique can be applied to approximate a posterior density

p (θ | z) = p (z |θ)p (θ)/p (z) when the evidence p (z) cannot be calculated. This re-

quires setting pun(X ) = p (z |θ)p (θ) where Zp = p (z), and the proposal distribution

is qun(θq), leading to the approximation in Eq. (6.16).

p (θ | z) ≈ wun(θq)
1
n

∑n
i=1w

un(θq)
(6.16)
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Figure 6.3: Posterior and predictive samples from a BHM numerical example. The
top panel shows the approximate posterior p (θ | z). The middle panel presents
the simulator output p (y |θ, z) given these posterior samples, where the black line
denotes the ‘true’ value and the grey lines are ±3(Vo +Vm). The bottom panel shows
the bias corrected output p (z∗ |θ, z) (where z∗ = z − e) given the posterior samples,
where the black line denotes the ‘true’ value and the grey lines are ±3Vo.

Where wun = p (z |θq)p (θq)/q
un(θq) is the probability of each sample θq ∼ qun.

However, as the method does not involve a likelihood an approximation is formed as

defined in Eq. (6.17), which is the product of multivariate Gaussian distributions

over z(x) for the set of inputs x.

p (z |θ) ≈ L(θ) =
M∏
j=1

N (z(x) |Ej (GP (x ,θ)), Vj(x,θ)) (6.17)

Where Vj(x,θ) = Vo,j + Vm,j + Vc,j(x,θ) which assumes that these sources of

uncertainty are normally distributed. As the emulator has a Student’s t-distribution

posterior this assumption means there are enough degrees of freedom for it to be

approximately Gaussian distributed. The proposal distribution can be formulated as

a multivariate Gaussian distribution as presented in Eq. (6.18).

qun(θ) = N (θ |µnI , κΣnI) (6.18)
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Where µnI and ΣnI are the sample mean and variance-covariance from the non-

implausible set after the last wave and κ is an inflation parameter to ensure good

coverage of the space.

The choice of prior p (θ) depends on the modellers beliefs from the last wave. However

it is often reasonable to assume a constant prior over the final non-implausible set,

as it is often a fraction of the original parameter domain. This means the weights in

Eq. (6.16) become wun = L(θq)/q
un(θq) where θq are a number of samples from qun

and the constant prior essentially truncates the proposal samples to be within the

final non-implausible domain.

Lastly the approximate posterior from Eq. (6.16) can be re-sampled in order generate

direct samples from the posterior. This involves drawing Nq samples where the proba-

bility of occurrence is defined by the normalised weights w(θq) = wun(θq)/
∑
wun(θq).

Figure 6.3 demonstrates importance sampling and re-sampling on from the numerical

example in Section 6.2 where Nq = 10, 000 and κ = 2. The re-sampled posterior

samples are subsequently used to draw Monte Carlo realisations of the simulator

and bias corrected output. The results show that the emulator has been adequately

calibrated with the two parameter solutions lying within the central probability mass.

Furthermore the simulator and bias corrected results lie within the given uncertainty

bounds.

6.2.2 Sequential Based Approaches

Central to implementing BHM is generating and evaluating computer DoEs. These

provide the information required to construct emulators with which to assess and

classify the parameter domain in a computationally efficient manner. As a result al-

ternative DoE formulations can be used, as opposed to space-filled designs such as the

Generalised Maximum Latin Hypercube (GMLHC). Two heuristic sequential based

methods are explored with a view to move towards information based DoEs. Two

metrics, probability of non-implausibility and expected (un)improvement, adapted

from the field of Bayesian optimisation, provide criteria for selecting new simulator

evaluations in a sequential manner and are explored in the following sections.
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Probability of Non-implausibility

Probability of non-implausibility assesses the chance of a parameter combination being

non-implausible given the observation and system uncertainties [108]. Mathematically

this is the probability that θ ∈ θnI if the mean prediction from the emulator lies

within the uncertainty bounds, D−,j(x) ≤ Ej (GP (x ,θ)) ≤ D+,j(x) as defined for

the ith parameter combination Eq. (6.19).

p (θi ∈ θnI) = Φ

(
D+,j(x)− E (GPj (x ,θi))

Vc,j(x,θi)−0.5

)
− Φ

(
D−,j(x)− E (GPj (x ,θi))

Vc,j(x,θi)−0.5

)
(6.19)

Where D+,j(x) and D−,j(x) are the upper and lower non-implausible output bounds

zj(x) ± vs
√
Vo,j + Vm,j with vs defining the bound width, and Φ (· · · ) a standard

Gaussian CDF. This variance scalar effectively behaves as the threshold in the

implausibility metric and here is set as 3 due to Pukelsheim’s 3σ rule.

The probability of non-implausibility is similar to the probability of improvement used

in Bayesian optimisation. This heuristic when implemented in Bayesian optimisation

is used to determine the probability of improving on the current minimum across a

space [130]. In contrast the formulation in Eq. (6.19) seeks parameter combinations

that are likely to be within the output bounds [D+,j(x) D−,j(x)], leading to the

confident exclusion of parameter regions when the probability of being non-implausible

is close to zero and the reverse when probability is close to one. The non-implausibility

criteria is therefore defined as parameter combinations where p (θi ∈ θnI) = 1.

In sequential BHM each wave seeks to find the parameter combination with the

largest probability less than one and to use this set as the next simulator evaluation.

This reflects the belief that probability one states — with certainty given the bounds

— that the parameter set output matches the output bounds, where the largest

probability less than one (and greater than zero) will indicate a potential match

which could be made certain either way by improving the code uncertainty of emulator

prediction for that set. A stopping criteria can be formed similar to Algorithm 5

where the process stops when the code uncertainty of the parameters with probability

greater than zero is less than the observational and model discrepancy uncertainties.

Figure 6.4 demonstrates a selection of waves when probability of non-implausibility
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(a) (b)

(c) (d)

Figure 6.4: Sequential BHM using probability of non-implausibility for waves k =
1, 5, 10, 18 for the numerical example. Top panels show the observational data with
±
√
Vo + Vm shaded region against the simulator and emulator predictions (where

the shaded regions indicated ±3σ), trained using the simulator runs η(θk) (·). The
bottom panels shows the probability of non-implausibility p (θ ∈ θnI), where (·)
indicates the new simulator evaluation for the (k + 1)th wave. Panel (a), (b), (c)
and (d) show waves k = 1, 5, 10, 18 respectively.

is implemented as part of a sequential BHM approach for the numerical example in

Fig. 6.1; with the same emulator mean and covariance functions and uncertainties.

Between waves 1 and 5 (Fig. 6.4a and Fig. 6.4b) it can be seen that the algorithm

spends simulator evaluations exploiting the nearby non-implausible region, with the

next simulator evaluation for wave 6 being away from this area. The algorithm

becomes more exploratory between waves 5 and 10, where the second non-implausible

region is starting to be identified. Finally by wave 18 the stopping criteria has been

met and the two non-implausible regions have been found. The approach requires

more simulator evaluations, 22, than Algorithm 5, 16. This is due to the probability

of non-implausibility being a highly exploitative criteria, as shown by the numerous
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evaluations about the non-implausible regions.

By deriving the probability of non-implausibility, BHM can be defined as a sub-

category of ABC [108]. Essentially this formulation becomes ABC with a uniform

prior p (θ) ∝ 1θ∈Θ over the assessed parameter domain Θ and an acceptance kernel

1η(θ)∈[D+,j(x) D−,j(x)] meaning the approximate posterior becomes,

p (θ | z) ∝

1 if θ ∈ θnI ,

0 otherwise
,

where a posterior probability of zero means an implausible parameter combination.

This comparison allows BHM to gain useful properties from ABC such as that ABC

performs exact inference under uniform additive model discrepancy [161].

Expected (un)Improvement

Another heuristic with an improved balance between exploratory and exploitative

objectives is expected (un)improvement. This proposed sequential design criteria

is a development and reformulation of expected improvement utilised in Bayesian

optimisation [162] combining the probability of matching observations within the

uncertainty bounds with the expected magnitude of the improvement at a particular

parameter combination.

To construct the criteria, (un)improvement must be defined; where improvement is

typically I(θ) = max(fmin − η(θ), 0) in Bayesian optimisation [162]. This definition

states that an improvement occurs when the simulator prediction is less than the

current function minimum, with the improvement being zero when the simulator

prediction is lower. In a BHM context the function minimum fmin is replaced by

the observation with its defined uncertainty bounds. In this context the notion

of improvement is not what is required, instead the search is for the ‘smallest

improvement’ from the known bounded observations. In addition there are two

improvement criteria as the observation is upper and lower bounded. This leads

to the formulation of a criteria that will be zero or positive when a parameter is

within the observation bounds and negative for the reverse. This sequential criteria

is designed from taking the expectation of two (un)improvement criteria, where

an (un)improvement occurs when the expected emulator prediction is below the
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lower bound Ilb(θ) = max(D− − E (GP(θ)), 0) or greater than the upper bound

Iub(θ) = max(E (GP(θ))−D+, 0). The expected (un)improvement for all possible

emulator values at a parameter combination is found by taking the expectation,

which can be calculated in closed form for the lower and upper bounds in Eqs. (6.20)

and (6.21) respectively.

Eη∼GP(θ) (Ilb(θ)) =
√
Vc(θ) (γlbΦ (γlb) + Φ (γlb)) (6.20)

Eη∼GP(θ) (Iub(θ)) =
√
Vc(θ) (−γubΦ (−γub) + Φ (γub)) (6.21)

Where γlb = (D− − E (GP(θ)))/
√
Vc(θ) and γub = (D+ − E (GP(θ)))/

√
Vc(θ) are

the standardised distances between the bounds and mean emulator prediction. The

expected (un)improvement criteria is the negative sum of Eqs. (6.20) and (6.21) as

defined in Eq. (6.22) and takes the same units as the emulator output.

− EI(θ) = −(Eη∼GP(θ) (Ilb(θ)) + Eη∼GP(θ) (Iub(θ))) (6.22)

The criteria can be combined with probability of non-implausibility to form a

sequential BHM algorithm, where the approach follows that outlined previously

(with the same non-implausibility and stopping criteria) with a different method

for selecting new simulator evaluations. New runs are obtained for the parameter

combination, with probability of non-implausibility less than one, where the expected

(un)improvement (−EI(θ)) is maximum.

Figure 6.5 presents a selection of waves from performing sequential BHM using

expected (un)improvement for the numerical example with the same emulator mean

and covariance functions and uncertainties. By wave 3 the method has begun explor-

ing the parameter space with simulator evaluations concentrated at the observation

bounds, as with probability of non-implausibility. Wave 10 demonstrates that the

approach has explored the parameter space and begins to exploit locations that

are likely to be plausible. At iteration 14 the algorithm has met the stopping cri-

teria showing a greater efficiency than both probability of non-implausible and the

space-filling approaches.
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(a) (b)

(c) (d)

Figure 6.5: Sequential BHM using probability of non-implausibility for waves k =
1, 3, 10, 14 for the numerical example. Top panels show the observational data with
±
√
Vo + Vm shaded region against the simulator and emulator predictions (where

the shaded regions indicated ±3σ), trained using the simulator runs η(θk) (·). The
bottom panels shows the negative expected (un)improvement −EI(θ) and probability
of non-implausibility p (θ ∈ θnI), where (·) indicates the new simulator evaluation for
the (k+1)th wave. Panel (a), (b), (c) and (d) show waves k = 1, 3, 10, 14 respectively.

Information Based Approaches

Information based approaches are alternatives to the aforementioned heuristics within

Bayesian optimisation. These techniques seek to design criteria from information

theory that maximises the expected information gain on the GP posterior. One

such approach, Entropy Search (ES), uses the current information, quantified by

the negative differential entropy of p
(
θks | Dk

)
, to select a new point θk+1 that will

minimise the expected negative differential entropy, where the sequential criteria is

defined in Eq. (6.23) [129, 163].
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ES(θks) = H
(
p
(
θks | Dk

))
− Ep(η | Dk)

(
p
(
θks | Dk ∪ {θ,η}

))
(6.23)

Where Dk is the set of current known simulator outputs η for a given set of param-

eter combinations θ, and H(p (θ)) = −
∫
p (θ) log p (θ)dθ, the negative differential

entropy, which for BHM is defined as in Eq. (6.24).

H(p (θi ∈ θnI)) = −
∫
p (θi ∈ θnI) log p (θi ∈ θnI)

− (1− p (θi ∈ θnI)) log(1− p (θi ∈ θnI))dθ (6.24)

Equation (6.23) in practice proves demanding to evaluate as the entropy does not have

an analytical solution and the distribution p
(
θks | Dk ∪ {θ,η}

)
must be calculated

for numerous combinations of θ and η.

In contrast to ES, Predictive Entropy Search (PES) targets the mutual information

between θks and η given Dk leading to a sequential design criteria defined in Eq. (6.25)

[164].

PES(θks) = H(p (η | Dk,θ))− Ep(θks | Dk)
(
p
(
η | Dk,θ,θks

))
(6.25)

This formulation leads to calculating posterior distributions (and their entropies)

which for a GP have analytical forms or can be approximated more easily, simplifying

the sequential design process. These approaches are likely to improve the efficiency

and effectiveness of sequential BHM and are left as areas of further research.

6.2.3 Model Discrepancy

BHM accounts for model discrepancy by defining a prior variance Vm, stating

an assumption of uniform additive discrepancy across the space. As stated in

Section 6.2.2, BHM is a subcategory of ABC and therefore has the property of

performing exact Monte Carlo inference for a uniform additive model discrepancy.

In order to illustrate this result a numerical example is outlined.
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Figure 6.6: BHM model discrepancy numerical example where the red (·) are
the observational data with ±

√
Vo + Vm bounds and the red (−) realisations from

Eq. (6.27).

A simulator is constructed from a mass, tensioned wire system from Section 2.1.3

redefined in Eq. (6.26), where M is mass, T is tension l = 1m is the length and wn

is the natural frequency.

η(x, θ) = wn(T,M) =
1

π

√
T

Ml
(6.26)

In the example model discrepancy is considered additive and sinusoidal, i.e. δ(x) =

0.5 sin(2π × 0.01x + φ) where φ ∼ U (0, 2π) is a random phase. The observational

process is defined in Eq. (6.27) with a ‘true’ mass θ̂ = 5.43kg and observational

uncertainty e ∼ N (0, 0.012). A comparison of the simulator and experimental data

is displayed in Fig. 6.6.

z(x) = η(x, 5.43) + δ(x) + e (6.27)

The uncertainties used in BHM are Vo = 0.012 from the noise and Vm = 0.5 due to

the maximum and minimum of the discrepancy δ(x). A multivariate implausibility

metric is implemented with a threshold calculated from the 99% quantile from a 10
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(a) (b)

Figure 6.7: BHM model discrepancy numerical example. Panel (a) shows the
approximate posterior over the parameters from importance sampling when κ = 2;
the black (−) is the modal estimate and the red (−) the ‘true’ parameter value. Panel
(b) presents Monte Carlo realisations of the simulator output given the parameter
posterior where the blue (−) is the modal estimate, the red (·) are the observational
data with ±

√
Vo + Vm bounds and the red (−) realisations from Eq. (6.27).

degree of freedom χ2-distribution. The emulator is constructed from a linear mean

function m(x,θ) = [x,θ]Tβ and Matérn covariance (where p = 2) and a nugget

term ν = 1× 10−8. A non-sequential approach is used where the parameter domain

is uniformly sampled with 50, 000 samples. The parameter domain bounds were

[2 20]kg and the experimental data was obtained at 10 equally space points from

200-1000N when φ = 0.

BHM reaches the stopping criteria after one wave and the approximate posterior from

importance sampling is presented in Fig. 6.7a along with Monte Carlo realisations

of the simulator output in Fig. 6.7b. It can be seen that the ‘true’ parameter

value θ̂ = 5.43 is within the central probability mass with a modal estimate being

θmode = 5.53 showing good agreement.

Another scenario of interest is when the model discrepancy is not a sum. This may

occur in most practical engineering scenarios, where the missing physics are coupled

with the known physics. In this scenario BHM should not be expected to perform

exact inference, but will result in an inflated parameter posterior where there should

be a portion of probability mass where the ‘true’ parameter occurs. In order to

demonstrate this scenario a numerical example using the mass, tensioned wire system

is demonstrated — as shown in Fig. 6.8. Here the observational process is an offset

mass, tensioned wire system defined as in Eq. (6.28); where a = 0.2 and b = 1− 0.2.
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Figure 6.8: BHM model discrepancy numerical example with coupled discrepancy,
where the red (·) are the observational data with ±

√
Vo + Vm(x) bounds and the

red (−) realisations from Eq. (6.27).

z(x) =
1

2π

√
T (a+ b)

M(ab)
+ e (6.28)

In this example the same settings are used as the previous example, however the model

discrepancy uncertainty is defined as Vm(x) = [1, 1.11, . . . , 2], describing a linear

increase in the model discrepancy. The offset produced by the model discrepancy in

Eq. (6.28) will affect the ability of the BHM process to approximate the posterior

parameter distribution. This is because the calibration process is still limited to the

incorrect functional form defined by the simulator. In addition the offset will cause a

bias in the posterior parameter distribution as is shown in Fig. 6.9a. Although the

parameter posterior distribution contains probability mass at the ‘true’ parameter

value there is a significant discrepancy between the modal estimate θmode = 3.54 and

the ‘true’ parameter value θ̂ = 5.43. Furthermore it can be seen in Fig. 6.9b that the

modal parameter solution produces an output that closes matches the observational

data, with a NMSE of 0.17. This indicates that the method will try to calibrate the

simulator given the modelling assumptions of a model discrepancy that is additive.

In contrast, the result in Fig. 6.9a shows that the ‘true’ parameter is within the
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(a) (b)

Figure 6.9: BHM model discrepancy numerical example with coupled discrepancy.
Panel (a) show the approximate posterior over the parameters from importance
sampling when κ = 2; the black (−) is the modal estimate and the red (−) the ‘true’
parameter value. Panel (b) presents Monte Carlo realisations of the simulator output
given the parameter posterior where the blue (−) is the modal estimate, the red (·)
are the observational data with ±

√
Vo + Vm(x) bounds and the red (−) realisations

from Eq. (6.27).

probability mass, and given that in most real applications the model discrepancy

is completely unknown, BHM can be a practical tool given the modeller limited

knowledge.

6.3 Representative Five Storey Building Case Study

Calibration of five bending modes of a representative five storey building structure

was performed using BHM in order to demonstrate the approaches applicability for

forward model-driven SHM. Modal testing was performed on a representative five

storey building structure made from aluminium 6082 under different pseudo-damage

extents as shown in Fig. 5.10. These pseudo-damage extents were added masses

m = {0, 0.1, . . . , 0.5}kg fixed to the first floor of the structure demonstrated in

Fig. 5.10b. The structure was excited with a 409.6Hz bandwidth Gaussian noise

via an electrodynamic shaker, with sample rate and sample time chosen to allow a

frequency resolution of 0.05Hz. Accelerometers were placed at each of the five floors

in order to obtain the first five bending modes. 40 averages were acquired for each

measurement and ten repeats were performed for each damage extent in order to

obtain an understanding of the underlying modal frequency distributions.
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Parameter Lower Bound Upper Bound
Elastic Modulus E 63.9GPa 78.1GPa
Poisson’s Ratio ν 0.297 0.363
Density ρ 2493kg/m3 3047kg/m3

Table 6.1: The prior parameter bounds for BHM on the five storey representative
building structure.

The observational data z(xz) used within the calibration process were the mean

natural frequencies when xz = {0, 0.3, 0.5}kg. The unseen validation set were the

full repeat measurements of z(xz) as well as those from the {0.1, 0.2, 0.4}kg pseudo-

damage extents, with the inputs collectively denoted as x∗. This highlights that

with a small subset of damage data predictions can be made using BHM for forward

model-driven SHM.

The simulator η(x,θ) was a modal FEA model where the five bending natural

frequencies were extracted as a set of outputs y. Evaluations of the simulator were

acquired for the six damage extents x = {0, 0.1, . . . , 0.5}kg and a range of parameter

θ values within a set of prior bounds; set as ±10% of typical material properties for

aluminium 6082 as shown in Table 6.1. Simulator runs for parameter combinations

determined by a fifty point, three dimensional GMLHC, were implemented as training

data for five independent GP emulators with a separate ten point three dimensional

GMLHC used to generate validation data.

6.3.1 Bayesian History Matching

Non-sequential BHM was implemented using GMLHCs to provide training data for

five independent GP emulators. Each emulator was constructed from linear mean

m(x,θ) = [x,θ]Tβ and Matérn (where p = 2) covariance functions with a nugget

of ν = 1× 10−8. Exploration of the parameter domain was performed via 100, 000

samples from uniform distributions over the bounds. A multivariate implausibility

(Eq. (6.5)) was implemented with the non-implausibility criteria being when the

maximum multivariate implausibility for all five outputs (the five natural frequencies)

was less than the 99% quantile for a three degree of freedom χ2-distribution (reflecting

the size of xz). The observational Vo,j and model discrepancy Vm,j uncertainties,

set for the first BHM wave are displayed in Table 6.2 and were estimated from

the experimental output variance of the ten repeats at the training inputs and

from the modeller’s judgement respectively. The stopping criteria required the
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Uncertainty ω1 ω2 ω3 ω4 ω5

Observational Vo 3× 10−5 0.02 0.09 0.05 0.01
Model Discrepancy Vm 1.5 0.01 0.01 1 1

Table 6.2: The process uncertainties defined in the implausibility measure utilised
for performing BHM on the five storey representative building structure.

code uncertainty from each of the five emulators to be less than their respective

observational and model discrepancy uncertainties Vo,j + Vm,j.

The stopping criteria was met after one wave as the code uncertainty for each of the

five emulators had an order of magnitude ≈ 10−4. This low level of code uncertainty

indicates that the emulators had captured the simulator behaviour well, and the

diagnostic checks from Section 4.2.2 evidenced that the emulators were valid. After

the first wave a non-implausible space ≈ 2.3% of the original space was identified.

In order to visualise the non-implausible space from the non-implausibility criteria

minimum implausibility and optical depth plots were created. These quantities

divide the parameter space into bins where each of the 100, 000 samples (from the

uniform parameter domain sampling) are placed. Minimum implausibility takes

the lowest value of implausibility below the threshold for the set of samples within

a given bin. This provides an indication of which parts of the parameter space

can be discarded irrespective of the other parameters. Optical depth is the ratio

between non-implausible samples and the total number of samples within a given

bin, providing an estimate of the probability of finding a non-implausible parameter

combination given the set within a bin. Figure 6.10 presents these quantities after

the first wave when each parameter is divided into thirty bins. Here it can be

seen that high values of elastic modulus and low values of density are identified as

non-implausible with Poisson’s ratio being relatively insensitive to the outputs. There

is a clear linear correlation between the non-implausible space of the elastic modulus

and density, displayed in the bottom left and top right quadrants of Fig. 6.10.

As the stopping criteria has been met approximate posterior densities can be formed

using importance sampling and re-sampling. A Gaussian proposal distribution with

κ = 2 was used to generate 100, 000 samples with which to assess the normalised

weights using the methodology presented in Section 6.2.1. 100, 000 samples were

subsequently obtained by re-sampling the posterior distribution. Figure 6.11 presents

the marginal and pairwise joint posterior distributions, which are visually similar to

the minimum implausibility and optical depths; with a linear relationship between
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low density and high elastic modulus values and a relatively insensitive effect from

Poisson’s ratio in the pairwise joint distributions. Figure 6.12 displays the marginal

posterior distribution for each parameter, all showing bi-modal distributions. The

pairwise joint posteriors indicate that these modes correspond to opposite ends

of the marginal distribution, for example the elastic modulus modal value around

75GPa corresponds to density mode around 2500kg/m3 and the two Poisson’s ratio

modes around 0.3 and 0.36. These results show the methods ability to account for

multi-modal behaviour within the defined parameter domain.

The output distributions for each of the five natural frequencies were obtained via

Monte Carlo sampling the posterior parameter distribution. 1, 000 samples were

taken from the re-sampled parameter posterior distributions and propagated through

each of the five emulators in order to obtain realisations of the output distributions.

As the code uncertainty across all emulators was extremely low ≈ 10−4, each emulator

mean was taken as deterministic. It is noted that if the emulator variances were

not several orders of magnitude lower than the combined observational and model

discrepancy uncertainties to be deemed negligible, posterior sampling of the GP

should be implemented via Eq. (6.29).

η̃(x∗, θ̃) = E
(
GP

(
x∗ , θ̃

))
+RT

∗,∗ζ (6.29)

Where E
(
GP

(
x∗ , θ̃

))
is the mean prediction from the GP emulator, R∗,∗ is

the upper matrix from the Cholesky decomposition of the predictive covariance

cov
(
GP

(
x∗ , θ̃

))
and the vector ζ ∼

∏M N (0, 1) are from M one-dimensional i.i.d.

standard Gaussian distributions [129].

The mean predictions of the GP emulators for the 1000 Monte Carlo realisations are

presented in Fig. 6.13 against the observational data used within BHM z(xz) with

±cσ(Vo,j + Vm,j) bounds; where cσ is the standard deviation associated with 99%

probability mass of a standard normal (assuming output distributions to be approx-

imately Gaussian). Figure 6.13 demonstrates that all five outputs are within the

defined uncertainty bounds. However large discrepancies between the experimental

observations and simulator outputs (represented by the five emulator’s mean pre-

dictions) occur, especially for the first and fifth natural frequencies. This illustrates

that the simulator has model form errors, that would lead to incorrect parameter

inference if model discrepancy was not considered in the calibration process.
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Figure 6.10: Minimum implausibility and optical depth plots for the first wave
of BHM on the representatives five storey building structure. Each quadrant is a
comparison of two parameter combinations for the given metric, e.g. the top right
quadrant is ρ against E for minimum implausibility and the bottom left E against ρ
for optical depth.

Figure 6.11: Marginal and pairwise joint posterior distributions for the first wave
of BHM on the representatives five storey building structure, where a darker shade
represents a higher probability.
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Figure 6.12: Marginal posterior distributions for the first wave of BHM on a repre-
sentatives five storey building structure.

6.3.2 Model Discrepancy Learning via Importance Sampling

Assuming that the model discrepancy was additive and appropriately accounted

for within the BHM process (and that the emulator mean accurately represents

the simulator with negligible uncertainty), Fig. 6.13 shows valid samples from the

approximate calibrated simulator outputs. The difference between these output

samples and the observational data points give a visual indication of the model

discrepancy magnitude and form. In order to infer the functional form of the model

discrepancy Eq. (6.1) is redefined so that the model discrepancy remains additive but

becomes functionally dependent on the inputs x and is assumed to be distributed as

a GP i.e. δ(x) ∼ GP (m(x) , K(x,x′)) which is dependant on the hyperparameters

φδ.

The output predictive distribution from BHM displayed in Fig. 6.13 are samples

p
(
y

(i)
∗,j |x∗,yj,xz,θ

(i), φ̂η,j

)
with θ(i) ∼ p (θ |Z,xz); where φ̂η,j are the jth emula-

tor’s MLE estimate of the hyperparameters and Z is a matrix of the five outputs

zj(x)|j=1:5. Assuming that φ̂η,j for all j are appropriately estimated these can be

assumed fixed rather than being marginalised out. This leads to an empirical Bayes

assumption of the GP emulator hyperparameters for each output (as already assumed

within BHM), and a consequence will be that uncertainty associated with φη,j are not
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Figure 6.13: 1000 samples of the BHM predictive outputs,

p
(
y

(i)
∗,j |x∗,yj,xz,θ

(i), φ̂η,j

)
given θ(i) ∼ p (θ |Z,xz).
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incorporated; for this reason φ̂η,j is removed in order to provide clarity of notation

without loss of meaning.

The desired distribution for the jth output is p
(
z∗,j |x∗, Z,yj,xz

)
where the model

discrepancy hyperparameters φδ,j and parameters θ are marginalised out. Calculat-

ing this distribution requires solving Eq. (6.30) where p
(
z∗,j |x∗, Z,yj,xz,θ,φδ,j

)
includes a GP mapping from yj to zj given θ, meaning that y∗,j is constructed from

the GP emulator prediction for each output.

p
(
z∗,j |x∗, Z,yj,xz

)
=∫ (∫
p
(
z∗,j |x∗, Z,yj,xz,θ,φδ,j

)
p
(
φδ,j
)

dφδ

)
p (θ |Z) dθ (6.30)

Equation (6.30) is intractable meaning that an approximation, using importance

sampling can be formed in order to obtain samples from p
(
z∗,j |x∗, Z,yj,xz

)
. Sec-

tion 6.3.2 presents three approaches for approximating Eq. (6.30) utilising importance

sampling. These methods can also be seen as Bayesian model averaging, a technique

outlined in Chapter 7 where models are averaged whilst weighted by their evidence.

Importance Sampling-Empirical Bayes

In the first approach, the inner integral (with respect to φδ,j) is approximated

using MLE estimates of the model discrepancy GP hyperparameters according to

standard GP inference — this avoids calculating the inner integral. In contrast,

the outer integral (with respect to θ) is approximated via importance sampling

where the unnormalised proposal is given by samples from p (θ |Z,xz), i.e. the

re-sampled parameters from BHM — all of which are equally likely and therefore

qun(θ(i)) ∝ 1. For the ith parameter sample θ(i) ∼ p (θ |Z,xz), outputs from the five

independent GP emulators are obtained y
(i)
j |j=1:5. The outputs are used to train the

ith model discrepancy GP in order to estimate φ̂
(i)

δ,j and acquire the unnormalised

weight wun,(i) = p
(
zj |y(i)

j ,xz,θ
(i)
)

— which is the marginal likelihood of the model

discrepancy GP; this is the case since the proposal is constant. By normalising

these weights p
(
z∗,j |x∗, Z,yj,xz

)
can be approximated as Eq. (6.31) were the mean

and variance are obtained by the law of total expectation and variance Eqs. (6.32)
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Algorithm 6 Importance Sampling-Empirical Bayes Model Discrepancy Inference

for j = 1 : Nout do

Training;
for i = 1 : Ns do

Predict p
(
y

(i)
j |yj,xz,θ

(i), φ̂η,j

)
Optimise φ̂

(i)

δ,j = arg max
φδ,j

p
(
zj |y(i)

j ,xz,θ
(i),φδ,j

)
w
un,(i)
j = p

(
zj |y(i)

j ,xz,θ
(i), φ̂

(i)

δ,j

)
end for
Normalise weights w

(i)
j = w

un,(i)
j /

∑Ns
i=1w

un,(i)
j

Prediction;
for i = 1 : Ns do

Predict p
(
y

(i)
∗,j |x∗,yj,xz,θ

(i), φ̂η,j

)
Predict ẑ

(i)
∗,j and Σ

(i)
z∗,j from p

(
z

(i)
∗,j |x∗, Z,yj,xz,θ

(i), φ̂
(i)

δ,j

)
end for
Predict the approximation of p

(
z∗,j |x∗, Z,yj,xz

)
via Eqs. (6.32) and (6.33)

end for

and (6.33).

p
(
z∗,j |x∗, Z,yj,xz

)
≈ N

(
E
(
z∗,j |x∗, Z,yj,xz

)
,V
(
z∗,j |x∗, Z,yj,xz

))
(6.31)

E
(
z∗,j |x∗, Z,yj,xz

)
=

Ns∑
i=1

w
(i)
j ẑ

(i)
∗,j (6.32)

V
(
z∗,j |x∗, Z,yj,xz

)
=

Ns∑
i=1

w
(i)
j (Σ

(i)
z∗,j + ẑ

(i)
∗,jẑ

(i)T
∗,j )

− E
(
z∗,j |x∗, Z,yj,xz

)
E
(
z∗,j |x∗, Z,yj,xz

)T
(6.33)

Where ẑ
(i)
∗,j and Σ

(i)
z∗,j are the mean and variance of the jth GP mapping from yj to zj

and Ns are the number of samples such that θ(i)|i=1:Ns . This process is summarised

in Algorithm 6.
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For this case study Ns = 1000 and the model discrepancy GPs are modelled with a

zero mean and Matérn (where p = 2) plus Gaussian noise covariance functions (i.e.

K + Iσ2
n). Figure 6.14 states the output predictions of the five natural frequencies

where model discrepancy has been accounted for. Apart from the first natural

frequency where the training data does not adequately cover the input domain, the

natural frequency predictions accurately account for the functional form of the model

discrepancy. Validation of the results is discussed in Section 6.3.3.

Importance Sampling

The second approach approximates both integrals via importance sampling tech-

niques. In this scenario the unnoramlised nominal distribution incorporates prior

information about the hyperparameters, p (θ) = p
(
zj |y(i)

j ,xz,θ
(i),φ

(i,k)
δ,j

)
p
(
φ

(i,k)
δ,j

)
.

Choices now remain as to the proposal distribution for φδ,j. One option is to

select the proposal to be equal to the prior i.e. qun
(
φ

(i,k)
δ,j

)
= p

(
φ

(i,k)
δ,j

)
, this can-

cels with the prior in the nominal distribution meaning the unnormalised weights

are w
un,(i,k)
j = p

(
zj |y(i)

j ,xz,θ
(i),φ

(i,k)
δ,j

)
. The second choice is that the proposal

is uniform qun
(
φ

(i,k)
δ,j

)
∝ 1 where the bounds are chosen to be large enough to

have sufficient support over the target distribution — in this formulation the un-

normalised weights are w
un,(i,k)
j = p

(
zj |y(i)

j ,xz,θ
(i),φ

(i,k)
δ,j

)
p
(
φ

(i,k)
δ,j

)
. Both these

solutions should converge to the same approximation given enough samples. Algo-

rithm 7 presents the process with which to marginalise out both φδ,j and θ. In this

approach Eqs. (6.32) and (6.33) also become the sum over Nφ as ẑ
(i,k)
∗,j and Σ

(i,k)
z∗,j

are samples of both the hyperparameters and parameters, reflecting the discrete

approximation of the double integral. Other importance sampling based approaches

to marginalising the hyperparameters from a GP are adaptive importance sampling

[165], where the proposal is iterative amended in order to improve convergence, and

SMC [166]. These techniques could be implemented to provide faster convergence of

the approximations.

Both choices of proposal have been implemented for this case study. Figure 6.15

presents the approximation when a uniform proposal is selected whereas Fig. 6.16

demonstrates the scenario when the proposal is equal to the prior. For both scenarios

Nφ = 100 and Ns = 1000 with the model discrepancy GPs modelled with a zero mean

and Matérn (where p = 2) plus Gaussian noise covariance functions (i.e. K + Iσ2
n).

The log hyperparameter priors were Gaussian distributed — logωx,j ∼ N (0, 6),
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Figure 6.14: BHM predictive outputs with inference of model discrepancy via
importance sampling and empirical Bayes trained GPs. The shaded regions indicate
±3σ.
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Algorithm 7 Importance Sampling Model Discrepancy Inference

for j = 1 : Nout do

Training;
for i = 1 : Ns do

Predict p
(
y

(i)
j |yj,xz,θ

(i), φ̂η,j

)
for k = 1 : Nφ do

Sample φ
(i,k)
δ,j ∼ q (φ)δ,j

w
un,(i,k)
j =

p
(
zj |y

(i)
j ,xz ,θ

(i),φ
(i,k)
δ,j

)
p
(
φ

(i,k)
δ,j

)
qun

(
φ

(i,k)
δ,j

)
end for

end for
Normalise weights w

(i,k)
j = w

un,(i,k)
j /

∑Ns
i=1

∑Nφ
k=1w

un,(i,k)
j

Prediction;
for i = 1 : Ns do

Predict p
(
y

(i)
∗,j |x∗,yj,xz,θ

(i), φ̂η,j

)
for k = 1 : Nφ do

Predict ẑ
(i,k)
∗,j and Σ

(i,k)
z∗,j from p

(
z

(i,k)
∗,j |x∗, Z,yj,xz,θ

(i),φ
(i,k)
δ,j

)
end for

end for
Predict the approximation of p

(
z∗,j |x∗, Z,yj,xz

)
via Eqs. (6.32) and (6.33)

end for

log σ2
f j ∼ N (V (zj), 4) and log σ2

nj ∼ N (Vo,j − 5, 6) — stating that a low noise and

smooth model discrepancy solution is expected. The bounds of the uniform proposal

were {logωx,j, log σ2
f j, log σ2

nj} ∼ U ({−15,−25,−25}, {25, 10, 0}) in order to provide

adequate support over the hyperparameter domain.

In both Figs. 6.15 and 6.16 inclusion of the hyperparameter uncertainty inflates the

predictive variance, given that the uncertainty associated with the hyperparameters is

now approximated. The two choices of proposal both provide very similar predictions,

which is expected if both are equally valid proposals and therefore approximations.

The posterior distribution over the hyperparameters can also be estimated from

the weights; Figs. 6.17 and 6.18 demonstrate these distributions for both proposal

options for the fifth natural frequency. Both methods produce similar hyperparameter

posteriors, however Fig. 6.17 clearly shows a much greater effect of the prior on the

posterior distribution. This may mean that as the uniform proposal is generating

samples over a wider, less focused hyperparameter domain the method may take

longer to converge than using the prior as the proposal density. Furthermore both
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results show the clear type I and II maximum likelihoods within the pairwise joint

densities, where each refers to the noise and roughness invariant solutions.

Discussion

The aforementioned importance sampling based techniques for inferring model dis-

crepancy require iteratively training a number of GP models, whether by importance

sampling or by MLE estimates (i.e. an empirical Bayes approach). The computa-

tional complexity of these GP models is a function of the observational data length

Nz, which for most applications will be very small. In this case study Nz = 3 making

these approach computationally practical. However, in scenarios where the number

of training observations is large the process could be run in parallel; where each

emulator or each independent sample of the parameters could be run in parallel

making the approach computationally practical.

The increased variance in Figs. 6.15 and 6.16 compared with Fig. 6.14 reflects the

uncertainty in the hyperparameters and represent a more rigorous handling of the

uncertainties. This can be most clearly seen in the first natural frequency where

despite a lack of informative training data the solution has converged to constant

mean process with a relatively large variance.

A benefit of inferring the functional form of the model discrepancy is that improve-

ments to the simulator can be made. Figures 6.19 and 6.20 present examples of

the observational predictions next to the model discrepancy for the fifth natural

frequency. The model discrepancy functional form is easily extracted from the impor-

tance sampling techniques by removing the predictive emulator output samples y
(i)
∗,j

from ẑ
(i)
∗,j before calculating Eqs. (6.32) and (6.33). These results show that the model

discrepancy was relatively constant over the masses with a small linear slope for the

fifth natural frequency. This information can then be used to improve the simulator,

aiding the ability of BHM to appropriately approximate the parameter posterior

p (θ |Z,xz) with less variance due to Vm,j, which will in turn reduce the uncertainty

in the predictive distributions. Lastly, multivariate GPs as both emulators and in

modelling the model discrepancy may reduce the total uncertainty in the prediction.

This would occur as if the outputs are assumed co-dependant on each other, then

more information may be provided output about their functional form from their

codependencies.



6.3. REPRESENTATIVE FIVE STOREY BUILDING CASE STUDY 169

Figure 6.15: BHM predictive outputs with inference of model discrepancy and GP
hyperparameters via importance sampling — uniform proposal. The shaded regions
indicate ±3σ.
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Figure 6.16: BHM predictive outputs with inference of model discrepancy and GP
hyperparameters via importance sampling — prior proposal. The shaded regions
indicate ±3σ.
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Figure 6.17: Marginal and pairwise joint posterior distributions of the hyperparame-
ters given a uniform proposal for the fifth natural frequency.

Figure 6.18: Marginal and pairwise joint posterior distributions of the hyperparame-
ters given the proposal is the prior for the fifth natural frequency.



172 6.3. REPRESENTATIVE FIVE STOREY BUILDING CASE STUDY

Figure 6.19: The predictions and model discrepancy for the importance sampling
empirical Bayes approach for the fifth natural frequency. The shaded regions indicate
±3σ.

Figure 6.20: The predictions and model discrepancy for the importance sampling
approach for the fifth natural frequency. The shaded regions indicate ±3σ.

6.3.3 Validation of Predictive Distributions

Hypothesis testing using both the KS- and MMD two sample tests were implemented

with a significance level α = 5% on the output predictions from both the importance

sampling-empirical Bayes and importance sampling (with the proposal defined as the

prior) approaches. Due to the low number of experimental data points, 100 repeats

of ten samples were taken from the predictive distributions and averaged for the

MMD-based hypothesis tests (implemented using a bootstrap approach with ten

shuffles of the data set and a median heuristic to determine the hyperparameter of

an SE kernel). The hypothesis test outcomes are presented in Tables 6.3 and 6.4 for

the importance sampling-empirical Bayes approach and Tables 6.5 and 6.6 for the

dual importance sampling technique.
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The KS-tests indicate that for 50% of the predictions the null hypothesis could not

be rejected for the importance sampling-empirical Bayes approach, compared to 6.6%

for the importance sampling methodology. The MMD two sample tests confirm a

similar interpretation, that for 33.3% of the predictions the null hypothesis could

not be rejected compared to 13.3% for the importance sampling technique (where

an averaged hypothesis ≥ 0.5 is consider rejected). These findings show that when

the uncertainty associated with the hyperparameters is considered, the inflation of

the variance leads to large dissimilarities between the observations and predictive

distributions. By incorporating the uncertainty about the hyperparameters this will

better reflect the lack of knowledge about the model discrepancy, but will also lead

to increased confusion in classifications within an SHM approach, if decision bounds

are based on these predictions. In addition, the importance sampling-empirical

Bayes technique produces a worse prediction of the first natural frequency by not

considering the uncertainty in the hyperparameters (as displayed in Fig. 6.14). The

prediction is worse as it under-estimates the variance and the mean prediction fails

to capture what is known physically, that natural frequency will decrease with added

mass. The outcomes of the hypothesis test therefore show that the uncertainty within

the modelling, observational data and model discrepancy are far to large to produce

statistical representative predictions of the observational data.

To analyse the predictions further distance metrics were applied. Both the total

variation and Hellinger distances, when predictions were compared to KDEs of

the observational data (calculated via numerical integration), indicate that the

importance sampling approach predictions are far from the observational data with

most above 0.5 for the two metrics. According to these distances the first natural

frequency distributions are close to the observational data for the 0kg, 0.3kg, 0.4kg

and 0.5kg masses but far for the 0.1kg and 0.2kg cases. This is expected based

on Fig. 6.15, where due to a lack of information about these states in the training

data, the method fails to capture the majority of the observational points at these

masses. The importance sampling-empirical Bayes technique in contrast shows much

better performance, with the Hellinger distances below 0.5 for all but the 0.1kg and

0.2kg cases for the first natural frequency, which are further than the importance

sampling distributions. In addition, the MMD distances confirm these trends, where

for the second to fifth natural frequencies the importance sampling method predicts

distributions far from the observational distributions, but predicts closer distributions

for the 0.1kg and 0.2kg cases for the first natural frequency. The area metric for both

approaches is relatively low, at an order of magnitude of 10−3, caused by the close
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Output 0.0kg 0.1kg 0.2kg 0.3kg 0.4kg 0.5kg
ω1 0 1 1 1 0 0
ω2 0 1 1 0 1 0
ω3 1 1 1 1 1 1
ω4 0 1 1 0 0 0
ω5 0 1 0 0 0 0

Table 6.3: KS-test results for the importance sampling-empirical Bayes approach.

Output 0.0kg 0.1kg 0.2kg 0.3kg 0.4kg 0.5kg
ω1 0.13 1.00 1.00 0.66 0.05 0.88
ω2 0.42 0.69 0.71 0.02 0.97 0.43
ω3 0.91 0.94 0.98 1.00 0.89 0.94
ω4 0.65 0.87 0.81 0.88 0.66 0.80
ω5 0.11 0.94 0.28 0.15 0.11 0.02

Table 6.4: MMD two sample test results for the importance sampling-empirical Bayes
approach. Results are the average over 100 repeats of ten samples from the predictive
distribution, using a bootstrap approach with ten shuffles and an SE kernel where
the hyperparameters are determined by a median heuristic.

Output 0.0kg 0.1kg 0.2kg 0.3kg 0.4kg 0.5kg
ω1 1 1 1 0 1 0
ω2 1 1 1 1 1 1
ω3 1 1 1 1 1 1
ω4 1 1 1 1 1 1
ω5 1 1 1 1 1 1

Table 6.5: KS-test results for the importance sampling approach.

Output 0.0kg 0.1kg 0.2kg 0.3kg 0.4kg 0.5kg
ω1 0.40 1.00 1.00 0.12 0.29 0.34
ω2 1.00 1.00 1.00 1.00 1.00 1.00
ω3 1.00 1.00 1.00 1.00 1.00 1.00
ω4 1.00 1.00 1.00 1.00 1.00 1.00
ω5 1.00 1.00 1.00 1.00 1.00 0.99

Table 6.6: MMD two sample test results for the importance sampling approach.
Results are the average over 100 repeats of ten samples from the predictive distri-
bution, using a bootstrap approach with ten shuffles and an SE kernel where the
hyperparameters are determined by a median heuristic.
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Method ω1 ω2 ω3 ω4 ω5

Importance sampling-empirical Bayes 157.60 0.07 0.01 0.01 0.12
Importance sampling 145.11 0.51 0.25 0.34 0.94

Table 6.7: A comparison of NMSEs for the importance sampling-empirical Bayes
and importance sampling approaches.

spacing of the observational points, leading to small areas between the empirical and

predicted CDFs. The area metric also confirms the aforementioned differences in

predictions.

NMSEs were quantified for the two approaches and displayed in Table 6.7. This

deterministic view leads to the conclusion that the two approaches have accurately

captured the mean trend for all natural frequencies apart from the first, with the

importance sampling-empirical Bayes approach performing best for all but the first

natural frequency.

These validation metrics all support the notion that these predicted outputs from both

approaches would cause problems when utilised in a forward model-driven context,

confusing decision bounds between damage states. However, the predictions from

these approaches accurately reflect the uncertainties due to modelling, parameters,

model discrepancy and observational noise. It is therefore challenging to produce

predictions with reduced uncertainty without targeting each of these sources. The

BHM-model discrepancy inference approaches described within this chapter provide

a technique for understanding and targeting these uncertainty sources. By visualising

and interrogating the model discrepancy functional form, simulator improvements and

model selection can be targeted in a more rigorous manner. Furthermore, in scenarios

where the training data is representative of the other known states, MLE estimates

of the hyperparameters can be appropriate. In contrast, using MLE estimates of the

hyperparameters in scenarios, like the first natural frequency, where the training data

is not representative of the remaining states, will lead to overly confident uncertainty

estimation when compared to marginalising the hyperparameters out. Furthermore,

issues will always arise when the number of observational points and repeats are low.

Validation metrics will struggle to accurately reflect the differences when they are

constructed from a small number of observational samples, as in this case study.
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Figure 6.21: Statistical distances applied to the predictions from the importance
sampling-empirical Bayes approach. Panel (a) is the area metric when compared to
the empirical ten point observational CDF. Panel (b) and (c) are the total variation
and Hellinger distances when compared to KDEs of the observational data. These
three distance metrics have been calculated via numerical integration. Panel (d) is
the averaged MMD distance over 100 repeats of ten samples from the predictive
distribution.
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Figure 6.22: Statistical distances applied to the predictions from the importance
sampling. Panel (a) is the area metric when compared to the empirical ten point
observational CDF. Panel (b) and (c) are the total variation and Hellinger distances
when compared to KDEs of the observational data. These three distance metrics
have been calculated via numerical integration. Panel (d) is the averaged MMD
distance over 100 repeats of ten samples from the predictive distribution.
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6.4 Conclusion

BHM is an effective method for discarding parameter space in an iterative and

‘likelihood free’ manner. This approach means that difficult to emulate outputs or

input combinations can be excluded and reintroduced between waves when they

are more defined; which would not be possible in a likelihood based approach.

Additionally, the method can be considered a specific case of ABC which has

been shown to perform exact Monte Carlo inference given additive uniform model

discrepancy. This removes the non-identifiablity problems of BCBC by separating

out the model discrepancy inference with the parameter distribution. It has also been

shown that the posterior parameter distributions can be approximated by importance

sampling.

Sequential approaches to BHM provide a more efficient approach to designing the

locations of simulator evaluations. Heuristics such as probability of non-implausibility,

and expected (un)improvement provide one view of integrating sequential designs

into BHM. Alternatively information-based techniques should provide a more efficient

process for selecting simulator evaluations, although these are left as areas of further

research. Moreover, more informative methods of sampling the parameter domain

within BHM should be explored, such as an SMC-BHM approach.

The representative five storey building structure case study demonstrated the ability

of BHM to calibrate and identify posterior parameter distributions given a simulator

with pronounced model form errors. In addition to approximating the posterior

parameter distribution via importance sampling, a methodology was presented for

identifying the functional form and uncertainty associated with model discrepancy

via marginalising out the parameters, and a method for marginalising out the

hyperparameters of the model discrepancy GP. The predictions from these approaches

captured the uncertainties associated with model discrepancy, with mean predictions

that accurately capture the behaviour of the natural frequencies. However the

resulting increased variance meant that these predictive distributions were statistically

significantly dissimilar to those from the observation samples. This shows a problem

with obtaining only a small number of observational samples, as well as the challenges

introduced by a more rigorous handling of uncertainty.



Chapter 7

Multi-Level Uncertainty

Integration

The main objective of forward model-driven SHM is to solve problems associated

with the lack of available damage state data at a full-system level. As a consequence

forward model-driven methods must employ a strategy that produces confidence in

full-system predictions of health states without a traditional approach to validation

at the full-system level. This provides the motivation for developing a multi-level

uncertainty integration strategy.

Multi-level uncertainty integration is a process whereby a structure is divided into

levels, where at the top is the full-system and below are potentially multiple levels of

sub-systems, each with a number of simulators. For each sub-system it is expected

that damage state data can be obtained, therefore allowing the simulators at this

level to be calibrated and validated. The approach contains a mechanism for these

validated sub-system simulators to be incorporated in a full-system level, providing a

level of validation and confidence. The key assumption is that UQ can be adequately

performed at multiple sub-system levels and that all damage mechanisms of interest

can be understood at a sub-system level.

In Section 7.2 a subfunction discrepancy approach is outlined. The technique seeks to

capture model discrepancies for each sub-system simulator and subsequently validate

the bias corrected predictions. These discrepancies are propagated through to a

full-system level with each simulator’s parameter uncertainties providing improved

179
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confidence in the full-system predictions and correcting simulator inadequacies. The

following chapter presents a subfunction discrepancy approach within a multi-level

uncertainty integration strategy, before demonstrating the technique on a numerical

example and outlining conclusions.

7.1 Introduction

Improving complex system predictions by incorporating knowledge from multiple

simulators (or modelling sources) has been attempted through a variety of techniques

all with differing objectives. Examples of approaches are Bayesian model averaging,

multi-fidelity and multi-level UQ. These methods are introduced and discussed,

relating their applicability in resolving a key challenge in forward model-driven SHM,

namely the problem of a lack of available data at a full-system level.

Bayesian model averaging removes the concept of a ‘best’ simulator and instead

considers an ensemble of plausible simulators that are assumed to be from a dis-

tribution; where all the simulators attempt to model the same phenomena. By

considering the weighted predictions from the ensemble a more reliable forecast can

be made. By defining an ensemble of N simulators {M1, . . . ,MN} trained using a

set of observations D in order to predict y, a set of posteriors, i.e. p (y |Mi,D) for

the ith simulator, can be obtained through a variety of Bayesian techniques. The

law of total probability means that the posterior p (y | D) when the ensemble of

simulators is marginalised out becomes the sum in Eq. (7.1).

p (y | D) =
N∑
i=1

p (Mi | D)p (y |Mi,D) (7.1)

Essentially Bayesian model averaging involves weighting posterior predictions from

each simulator by the likelihood of the particular simulator being correct given

training data, i.e. wi = p (Mi | D), where wi denotes a weight. The technique has

found multiple uses in improving forecasts/extrapolations [167–170]. The method is

well suited to weather forecasts [167, 169], where the system of interest is complex,

time-varying data is available, model bias can be present and in different amounts

varying with application context. In contrast, forward model-driven SHM applications

will often not have data, at least initially, for any damage extents at a full-system
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level, making the technique not viable as a solution to the lack of full-system data

problem. On the other hand, the approach could be used to improve sub-system

level predictions where damage state data is available.

Multi-fidelity modelling is similar to Bayesian model averaging but covers the more

general case of using multiple approximate simulators to inform and accelerate UQ.

The objective is that by using several low-fidelity simulators (or even in combination

with a high-fidelity simulator) increased speed (typically when using Monte Carlo

simulations) and accuracy can be achieved. The approach is more than just emulation

as it often links low-fidelity models with a high fidelity model in order to estimate

accuracy and provide convergence guarantees on the outputs from UQ methodolo-

gies. A review of these approaches is provided by Peherstorfer et al. in [171]. As

with Bayesian model averaging these techniques could provide savings within UQ

applications where one system is being modelled by several representations and data

is available for this system. The methodologies do not provide a clear solution to a

scenario where full-system data is not obtainable, like in forward model-driven SHM.

Multi-level uncertainty integration (or multi-level modelling) on the other hand

provides a strategy for combining simulators at different levels in order to make

full-system predictions. This can be from a combination of deterministic and/or

stochastic simulators [172]. The approach is often formulated as Bayesian inference

where there is some unknown set of global parameters Θ that are common to a set of

simulators; which are either nominally similar with slight modifications in parameters

[172] or have variations in boundary conditions and loading [55]. The Bayesian

formulation allows the construction of a graphical model in order to visualise the

conditional relationships between variables and simulator interactions, with inference

performed using an MCMC scheme for the complete variable set. A Bayesian

network/graphical model states the conditional probability relationships where an

arrow denotes conditionality (and therefore is a directed graph). For example in

Fig. 7.1, starting at the node for θ there is only one arrow connected to the node η;

this can be written mathematically as p (η |θ).

Sankararaman and Mahadevan attempt to formalise this approach by providing a

distinction between two types of simulator interaction; type-I, where the simulator

outputs are inputs to the next simulator illustrated in Fig. 7.1, and type-II where

simulator outputs can be determined from parameters inferred from another simulator

as presented in Fig. 7.2 [55]. However, multiple other interactions could be imagined,

for example a combination of type-I and -II together, or a scenario where discrepancy
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Figure 7.1: Bayesian network for a type-I interaction.
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Figure 7.2: Bayesian network for a type-II interaction.
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is excluded from the output conditional, or where discrepancy is the only quantity

that the following simulator is conditioned on. These divisions may not be completely

general and therefore not be appropriate in a complex system of sub-simulators.

Additionally, inference of a large combination of simulators, all with different data

sets, will become increasingly costly and difficult to perform in one step. Instead it

may be more practical to combine simulators that have been calibrated separately

and perform full-system inference by Monte Carlo sampling each simulator (or

its equivalent emulator). Furthermore, these frameworks often fail to discuss the

complexities of simulator interactions when modelling components or sub-assemblies

of a larger structure. Although general graphical models like those in Figs. 7.1

and 7.2 can be created for any arbitrary simulator, practical difficulties often arise

when dividing a structure into approach sub-systems and levels.

Another view of multi-level uncertainty integration, similar to the general Bayesian

inference methods, is that of the subfunction discrepancy approach. The technique

was initially developed as a method for combining medical trials and health models

together to make inferences about whether to fund drug trials [173]. The approach

seeks to divide a full-system into a series of known or measurable sub-systems at

differing levels. These are then combined (originally as type-I interactions) in order

to make decisions about the cost of funding a certain treatment. Data about the costs

associated with funding or not funding the treatment for the complete population are

not obtainable and therefore each sub-system simulator must be accurate, based on

observed data at that level. This means that model discrepancy is inferred at each

state and propagated through. This technique allows calibration to be performed

on a simulator by simulator basis. This type of approach is well suited to forward

model-driven SHM as it provides a framework for obtaining confidence in full-system

predictions without requiring data at the full-system level. The technique could also

be formulated as a graphical model, however this is not investigated in this chapter.

7.2 A Subfunction Discrepancy Approach

Forward model-driven SHM relies on the ability to generate validated simulators

of full-systems for various damage mechanisms of interest. A complication is that

observational data for each of these damage states are often not obtainable at a

full-system level. This creates a problem in how to validate and gain confidence in a
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full-system simulator especially when modelling damage scenarios where observational

data is not available. This provides the key motivation behind the development of

a multi-level uncertainty integration strategy for forward model-driven SHM. This

type of strategy seeks to use a combination of validated sub-system simulators at

various levels, e.g. at material, component or sub-assembly level, in order to capture

behaviours of the full-system, for which observational data cannot be obtained,

with the aim of producing the required outputs under these behaviours. In an

SHM context, the desired full-system outputs are damage sensitive features and the

behaviours are generally the changes of these features under damage types of interest

(although additional environmental changes may be included).

A strategy for performing multi-level uncertainty integration is a subfunction discrep-

ancy technique. Here the approach is an adaptation and unification the approach

proposed by Strong et al. in [173] for forward model-driven SHM. The proposed

method divides a full-system structure into a number sub-system simulators that

meet certain requirements. Firstly, there must be an output that can be measured

experimentally and used to validate the sub-system simulator for the required inputs

xsub ∈ xfull (where the superscripts sub and full indicate the sub-system and full-

system levels). Secondly, it is imperative that the functional relationship contains a

set of parameters θsub ∈ θfull and inputs xsub ∈ xfull that are included in or affect

the full-system simulator. Accordingly, experimental data at each sub-system can

be used to validate and make inferences about their respective simulator. UQ for

each sub-system may be employed to quantify parameter, model discrepancy and

observational uncertainties, leading to confidence in the sub-system simulator. These

inferences can be propagated through to the next level of the strategy. A key assump-

tion is that the physics controlling changes at a full-system level can be captured at

multiple sub-system levels, in addition to corrections for model discrepancies and

quantification of uncertainties. Once propagated to a full-system level, this results in

a complete understanding of the full-system uncertainties and should reduce model

form errors or missing physics to a negligible level for the desired output quantity.

The methodology assumes that simulators at a sub-system level, for which observa-

tional data z is obtainable, can be modelled statistically in Eq. (7.2).

z(x) = y(x) + e = η(x,θ) + δ(x) + e (7.2)

Where z(x) and y(x) are observational and bias corrected simulator outputs given
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the inputs x respectively. The bias corrected simulator output is equal to the sum of

the simulator η(x,θ) and the model discrepancy δ(x), where θ are parameters of the

simulator. The observations are assumed to be uncertain reflected in the addition of

e.

The subfunction method for the simplest case — one level, one sub-system simulator

and one full-system simulator, where all the parameters are contained within the

sub-system simulator — can be defined mathematically as in Eqs. (7.3) and (7.4).

ysub(x) = ηsub(x,θ) + δsub(x) (7.3)

zfull = yfull(x) + efull = ηfull(ysub(x),θ) + efull (7.4)

In this case, by performing inferences and validating the sub-system level simulator

using Eq. (7.3), confidence can be established for the outputs of the full-system

model under the input x. It is assumed in this example that model discrepancy

is found only at the sub-system level. This means that the model discrepancy at

a full-system is only dependent on that of the sub-system. It is noted that it is

possible to add model discrepancy at a full-system level (Eq. (7.4)); this maybe

useful for correcting non-input dependant model form errors. In Eq. (7.2) the model

discrepancy is described as having a functional form, implying that the simulator

does not include all physics and may have assumptions or approximations that affect

the functional output. As stated in Section 2.1.3, considering the functional form

of model discrepancy is important for making robust statistical inferences. As a

result, the subfunction discrepancy approach proposed utilises GP models in order to

infer model discrepancy. Due to the bespoke nature of the subfunction discrepancy

approach Section 7.3 provides an explanation of the technique applied to a numerical

case study of a four degree-of-freedom shear structure.

7.3 Shear Structure Case Study

A numerical case study is presented as a demonstration of the subfunction discrepancy

approach to multi-level uncertainty integration outlined in Section 7.2. The full-

system is a linear four degree-of-freedom shear structure where each of the four masses
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is supported by a bolted beam illustrated Fig. 7.3a. The objective is to calculate the

distributions of the four natural frequencies ωn = {ω1, ω2, ω3, ω4}, as two damage

types are introduced to the structure — an open crack of length lcr at the midpoint

of any of the four beams, and a reduction in the non-dimensionalised clamping force

f , at any of the four bolted joints. For simplicity both damage types are assumed

to only affect the stiffness K of the full-system and in a quasi-static manner where

K = (Kb × Kj)/(Kb + Kj) (where Kb and Kj are the beam and joint stiffnesses

respectively). Accordingly, the functional mapping of the full-system is defined as

Xfull → yfull where yfull = ωn, Xfull = {lcr,f} and the mapping depends on

parameters θfull. In addition, parameter distributions in this case study are fixed for

both simulator and ‘true’ behaviours, stated in Table 7.1. Calibration is not pursued

in this case study in order to simplfy the explanation of the framework, although

it is possible to implement calibration techniques (such as BCBC or BHM) within

the approach. The parameter distributions have been chosen so that a wide range

of distributions are represented in order to display the flexibility of the technique.

Throughout this case study UP is performed via Monte-Carlo sampling using 500

draws from the parameter distributions in simulated cases. For experimental tests 50

repeats are performed, where each repeat is an independent draw for the parameter

distributions.

The first stage of the subfunction discrepancy approach is to divide the full-system

into corresponding sub-systems, for which there must be measurable outputs and

either parameters or outputs that affect the full-system. This study divides the four

degree-of-freedom shear structure by one level at which there are two sub-systems —

the beam and bolted joint — presented in Fig. 7.3. The reason for this is that static

deflection tests can be performed for an increase in damage in each sub-system, and

subsequently, quasi-static stiffness values can be determined from the experimental

tests. Additionally, both sub-systems inform of the full-system response as each

can be used to quantify the stiffness reduction under their respective damage type.

The sub-systems can be defined as follows. For the beam sub-system (simulator

one, level one): ηsub1,1 : xsub1,1 → ysub1,1 where xsub1,1 = lcr, and ysub1,1 = Kb the beam tip

stiffness. For the joint sub-system (simulator two, level one): ηsub2,1 : xsub2,1 → ysub2,1

where xsub2,1 = f , and ysub2,1 = Kj the joint stiffness. A full-system simulator is then

formed as ηfull : xfull → yfull for the inputs Xfull = {ncr,nf , ysub1,1 (xsub1,1 ), ysub2,1 (xsub2,1 )}
and outputs yfull = ωn. The following subsections describe how each system is

constructed with details on the simulator and numerical experimental data.
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Parameter Value System ‘True’ Simulator
Beam length lb 175mm sub1,1, full
Beam width wb 25mm sub1,1, full
Beam thickness tb 5mm sub1,1, full
Plate length lp 300mm full
Plate width wp 250mm full
Plate thickness tp 25mm full
Elastic Modulus E N (71, 0.52)GPa sub1,1, full
Density ρ N (2700, 1002) full

kg/m3

Beam length xcr 87.5mm sub1,1

crack location
Crack model α 0.667 sub1,1

parameter
Initial joint Kji Wei (50005, 100) sub1,2, full
stiffness N/m
Rate of joint κ U (4.9, 5.1) sub1,2

stiffness change
Joint stiffness p U (1.99, 2.01)N/m sub1,2

magnitude at
f = 1
Linear joint β U (−1.72,−1.68) sub1,2

model gradient

Table 7.1: Parameters of the four degree-of-freedom shear structure. The ‘true’ and
simulator columns refer to which numerical models the parameters are used in.

Beam Sub-system

The four stiffness values K from the full-system are affected by the tip stiffness of a

cantilever beam Kb. In this case study any of the four beams can be damaged by a

midpoint crack xcr, of increasing crack length lcr, as depicted in Fig. 7.3d. In order

to illustrate the fact that ‘All models are wrong but some are useful’ [41] — due to

missing physics and/or approximations — the ‘true’ behaviour and the simulator are

derived from different numerical models in the literature. The ‘true’ behaviour for

the change in stiffness from an open crack is formulated using the numerical model

defined by Christides and Barr [174] in Eq. (7.5). A bilinear stiffness model, by Sinha

et al. [175], forms the simulator presented in Eq. (7.6). Both stiffness models are

solved using the Euler-Bernoulli bending beam equation in Eq. (7.7) via numerical

integration, where the beam stiffness is calculated via Kb = −F/ytip (ytip
1 is the tip

1The notation y here indicates the deflection and not an output.
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Figure 7.3: Schematics of the four degree-of-freedom shear structure. Panel (a) is
the ‘true’ full-system with beams bolted to the underside of each plate. Panel (b) is
the full-system simulator where M is the mass of the blocks and K is the stiffness (a
combination of the bolt and beam stiffness in series). Panel (c) is the bolted joint
sub-system for a reduction in the non-dimensionalised clamping force f . Panel (d) is
the cantilever beam sub-system with a crack of length lcr.

deflection). This means that both the ‘true’ behaviour and simulator for the beam

sub-system map lcr →Kb. The simulator for this sub-system is the first simulator

at level one — denoted ηsub1,1 .

EI(x) =
EI0

1 + C exp(−2α|x− xcr|/tb)
(7.5)

EI(x) =


EI0 if x ≤ xcr,1 or x ≥ xcr,2

EI0 − E(I0 − Ic) x−xcr,1
xcr−xcr,1 if xcr,1 ≤ x ≤ xcr

EI0 − E(I0 − Ic) xcr,2−x
xcr,2−xcr if xcr ≤ x ≤ xcr,2

(7.6)

∂2y

∂x2
= −M(x)

EI(x)
(7.7)

Where E is the elastic modulus, x is the distance along the length of the beam

and M the bending moment. The second moment of areas I0 = (wbt
3
b)/12 and
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I0 = wb(tb − lcr)3/12 contribute to the constant C = (I0 − Ic)/Ic, where wt and tb

are the beam width and thickness respectively. The parameter α is set according to

experimental work performed by Christides and Barr [174] (presented in Table 7.1).

In the bilinear model, positions beside the crack are calculated by xcr,1 = xcr − leff
and xcr,2 = xcr + leff where the effective length of the stiffness reduction due to a

crack is leff = 1.5tb, as defined by Sinha et al. [175]; based on the work by Christides

and Barr [174].

The experiment for this sub-system is a static deflection test, due to the quasi-static as-

sumptions in Eqs. (7.5) and (7.6). The beam was forced from F = {100, 150, ..., 500}N
for each crack length lc = {0, 0.1, ..., 0.9}× tbmm and the tip deflection ytip measured

(numerically using Eqs. (7.5) and (7.7)) with observational uncertainty distributed

esub1,1 ∼ N (0, 12)mm. The experimental beam stiffness at the tip was subsequently

estimated via the gradient from a least-squares linear regression fit between the force

and tip deflection.

The statistical model in the form of Eq. (7.2) can be formulated as in Eq. (7.8).

zsub1,1 (xsub1,1 ) = ηsub1,1 (xsub1,1 ,θ
sub
1,1 ) + δsub1,1 (xsub1,1 ) + esub1,1 (7.8)

Where zsub1,1 (xsub1,1 ) = Kexp
b (lcr) (the experimental beam tip stiffness), xsub1,1 = lcr.

The bilinear numerical model forms the simulator ηsub1,1 (xsub1,1 ,θ
sub
1,1 ), where θsub1,1 =

{lb, wb, tb, E, xcr} and the output is ysub1,1 (xsub1,1 ) = Kb(lcr). Both the observational

uncertainty esub1,1 and model discrepancy δsub1,1 (xsub1,1 ) are assumed unknown. Conse-

quently, a GP regression model is utilised to infer both the model discrepancy

and observational noise, regressing from crack lengths lcr to the residual stiffness

∆Kb = Kexp
b −K

mode
b where mode indicates the simulator output at the modal values

of the parameter distributions. Initially a leave-one-out cross validation process

was used, where the 50 samples for each crack length were omitted periodically in

training. However very small changes in the functional form were witnessed, leading

to the full experimental data set being used in training. The bias corrected beam tip

stiffness is compared to the simulator output and the experimental results in Fig. 7.4.

This demonstrates the ability of a GP regression model to capture the functional

form of the discrepancy whilst estimating a homoscedastic observational uncertainty

(the results may be improved with a hetroscedastic observational uncertainty model

in the GP regression model [138], this is left as an area for further research). The

NMSE between the bias corrected and experimental data means are 0.001 showing
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Figure 7.4: Subsystem simulator 1 level 1, sub1,1. A comparison of bias corrected,
experimental and simulator beam tip stiffness Kb for different crack lengths lcr.

excellent agreement.

Bolted Joint Sub-system

The bolted joint stiffness Kj at any of the four locations in the full-system can be

damaged via a reduction in the clamping force, parametrised by a non-dimensional

clamping force f , presented in Fig. 7.3c. The ‘true’ behaviour and simulator output

of Kj , for a reduction in f , are modelled numerically as shown in Eqs. (7.9) and (7.10)

respectively; where Eq. (7.9) is a quasi-static bolt loosening model defined by Todd

et al. [176, 177] and Eq. (7.10) is a linear fit of that numerical model. Consequently,

the bolted joint sub-system maps f →Kj. The simulator for this sub-system is the

second simulator at level one — denoted ηsub1,2 .

Kj(f) = Kji × tanh (κ(1− f))

(
p+ (1− p) tanh

(
κ

f

1− f

))
(7.9)

Kj(f) = Kji × (βf + p) (7.10)
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Where Kij is the initial stiffness of the bolted joint, κ adjusts the rate of stiffness

change, p adjusts the stiffness function magnitude at f = 1 and β is the gradient

of the linear model. It is noted that the stiffness function is maximum at f = 1

and minimum and f = 0 to correspond with a reduction in force, meaning that the

outputs for f are reversed.

The experiment for this sub-system is also a static deflection test, due to the

quasi-static assumptions in Eqs. (7.9) and (7.10). The joint was forced from F =

{100, 150, ..., 500}N for each reduction in non-dimensionalised clamping force f =

{1, 0.9, ..., 0.1} and the tip deflection measured (using Hooke’s law F = −Kjy) with

observational uncertainty distributed esub2,1 ∼ N (0, 12)mm. Again the experimental

joint stiffness is estimated from the gradient of a least-squares linear regression model.

The statistical model in the form of Eq. (7.2) can be formulated as in Eq. (7.11).

zsub2,1 (xsub2,1 ) = ηsub2,1 (xsub2,1 ,θ
sub
2,1 ) + δsub2,1 (xsub2,1 ) + esub2,1 (7.11)

Where zsub2,1 (xsub2,1 ) = Kexp
j (f) (the experimental joint stiffness) and xsub2,1 = f . The

simulator ηsub2,1 (xsub2,1 ,θ
sub
2,1 ), is a linear numerical model (Eq. (7.9)) where θsub2,1 =

{p, β,Kji} and the output is ysub2,1 (xsub2,1 ) = Kj(f). Using a GP regression model,

both the observational uncertainty esub2,1 and model discrepancy δsub2,1 (xsub2,1 ) are inferred

in the same manner to the beam sub-system, regressing between f and ∆Kj =

Kexp
j − Kmode

j . Similarly to the beam sub-system an initial leave-one-out cross

validation process was employed, and due to relatively small changes in the functional

form the full experimental data set was used in training. Fig. 7.5 shows a comparison

for the bias corrected simulator and experimental joint stiffness for a reduction in

clamping force. As with the beam sub-system, the bias corrected joint stiffness

captures the functional form of the model discrepancy, which is not captured by the

simulator. Homoscedastic assumptions in the GP regression model again mean that

a homoscedastic observational uncertainty is inferred. The NMSE between the bias

corrected and experimental data means are 0.048 showing good agreement.

Full-System Integration

The full-system is an undamped linear spring-mass system (Fig. 7.3b) where the

spring stiffnesses K are composed of the beam tip stiffness and bolt stiffness in series
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Figure 7.5: Subsystem simulator 2 level 1, sub2,1. A comparison of bias corrected,
experimental and simulator joint stiffness Kj for a reduction in non-dimensionalised
clamping force f - it is noted that the axis is reversed as [176, 177].

K = (Kb ×Kj)/(Kb +Kj). The four degree-of-freedom system can be solved via an

eigenvalue problem for the natural frequencies of the system. For this case study the

‘true’ and simulator numerical models are equivalent with the only difference being

the input values for the beam tip and joint stiffnesses under damage. This means

that there is no model discrepancy at the full-system level resulting in Eq. (7.12); due

to the assumption that all the model discrepancy due to damage can be captured at

a sub-system level. The percentage difference of natural frequency ∆ωn is used as a

damage feature in this case study, as it is a more damage sensitive feature compared

to natural frequency [178].

zfull(Xfull) = ηfull(Xfull,θfull) + efull (7.12)

Where zfull(Xfull) = ∆ωn(Xfull) — the percentage differences of the experimental

four natural frequencies under damage. There are several inputs to the full-system

Xfull = {ncr,nf , ysub1,1 (xsub1,1 ), ysub2,1 (xsub2,1 )} where ncr and nf indicate the floor in which

the damage occurs, for the crack and loosened bolt respectively. As ncr and nf are

only position inputs for this simple system it is assumed that no input dependent

model discrepancy term is required. The other inputs are: ysub1,1 (xsub1,1 ) = Kb(lcr),
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— the beam tip stiffness under a midpoint crack — ysub2,1 (xsub2,1 ) = Kj(f), — the

joint stiffness from a reduction in clamping force (dependent on their sub-system

model discrepancy). The full-system simulator ηfull(Xfull,θfull) also depends on the

parameter set θfull = {lb, wb, tb, lp, wp, tp, E, ρ,Kij}. The numerical nature of this

case study allows the comparison of both ‘true’ and simulator outputs, ∆ωn, under

these damage types.

500 Monte Carlo realisations, drawn from the outputs of level one and the full system

parameters were generated in order to compare the bias corrected, simulator and

‘true’ full-system outputs. Figures 7.6 and 7.7 present the bias corrected ∆ωn under

increasing crack length and for a reduction in clamping force. As expected, the

increase in crack length has a greater effect on the natural frequencies of the system

compared to a reduction in clamping force (reflected in the stiffness reductions in

Figs. 7.4 and 7.5). The first natural frequency is the most affected by an increase

in crack length, with a comparable reduction in the first, second and third natural

frequencies for a reduction in clamping force. Figure 7.8 demonstrates an example

comparison of the output distributions for ∆ω1, where both damage types are located

at the first floor and the only damage type is an increase in crack length. A visual

comparison shows that for the first five damage states lcr = {0, 0.1, 0.2, 0.3, 0.4} × tb,
the distributions are very similar, after which the simulator fails to capture the

correct distribution forms, whereas the bias corrected simulator maintains a good fit.

Hypothesis testing using the KS-two sample test were performed at each damage

scenario, for each natural frequency, totalling 6400 combinations. The significance

level, the upper bound of the probability of type 1 errors, was αH = 0.01. The

percentage of null hypotheses H0, that were not rejected, for both the bias corrected

and simulator outputs at a full-system level, when compared to the ‘true’ outputs,

were 97.5% and 26.2%. This demonstrates that the proposed subfunction discrep-

ancy approach outperforms utilising the simulator without recognition of model

discrepancy, providing a significant improvement. In order to illustrate this further

Fig. 7.9 presents a comparison between the subfunction discrepancy technique and the

original simulator for the first natural frequency; this was the worst performance of

the uncertainty integration strategy. It can be seen that the subfunction discrepancy

methods performance is the same for all locations at 90% (in other natural frequencies

there are differences at different locations). The original simulator however, performs

best when damage is located at the highest floors, at 54%. This is because as damage

is located at a lower floor it will have a greater effect on the first natural frequency
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Figure 7.6: Bias corrected outputs — the percentage difference of the four natural
frequencies ∆ωn — for an increase in crack length (at the midpoint) at different
floors of the full-system ncr = nf = {1, 2, 3, 4} (red, blue, green, purple).

Figure 7.7: Bias corrected outputs — the percentage difference of the four natural
frequencies ∆ωn — for a reduction in clamping force at different floors of the full-
system ncr = nf = {1, 2, 3, 4} (red, blue, green, purple). It is noted that the x-axis
is reversed as [176, 177].
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Figure 7.8: A comparison of ∆ω1 for increasing crack lengths at the midpoint of floor
one; original simulator (green), subfunction discrepancy technique (blue) and ‘true’
(red) outputs. It is noted that the axis limits are different for lcr = {0.8, 0.9} × tb
due to the large decrease in natural frequency.

of the system (as it is the first bending mode). Damage due to a crack located at

the lower floors also affects the first natural frequency more than damage at the

joint. This is expected from Figs. 7.4 and 7.5; both indicate the original simulator

fails to capture the stiffness reduction for a crack to a greater extent than the due

to a reduction in clamping force. The NMSEs for all 6400 combinations for both
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(a) (b)

Figure 7.9: The percentage of null hypotheses H0, that are not rejected for the first
natural frequency. Panel (a) presents the results for the subfunction discrepancy
approach and panel (b) for the original simulator.

the original simulator and subfunction discrepancy approach were 93.57 and 0.002

respectively. This highlights the inability to capture the mean trend in the original

simulator, and the excellent agreement in the mean outputs for the subfunction

discrepancy technique and ‘true’ full-system.

In order to analyse these results further, Fig. 7.10 presents a comparison of hypothesis

test outcomes from all combinations of damage located at floor one, for the first

natural frequency, are presented. This is chosen as the original simulator performs

worse at this location, aiding the diagnoses of the difference in performance. The null

hypothesis is rejected for all clamping force reductions when the crack length is at

90% of the beam thickness for the subfunction discrepancy method. This indicates

that the beam tip stiffness for this crack length has not accurately been captured,

and should be an area of model improvement at the sub-system level. On the other

hand, the original simulator fails to capture the majority of damage scenarios. It

performs best when the crack length is small (under 20% of the beam thickness) and

when the reduction in clamping force results in the linear model overlapping the

hyperbolic tangent model (Fig. 7.5). Consequently, the failure to adequately capture

the model form at a sub-system level will result in poor full-system performance and

as all physics can never be fully captured in any model, a mechanism for quantifying

the functional form and uncertainty due to model discrepancy is paramount.
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(a) (b)

Figure 7.10: KS two sample hypothesis test results for the first natural frequency
where both damage types are located at floor one; panel (a) is the subfunction
discrepancy approach and panel (b) the original simulator.

Figure 7.11: A comparison of the histograms and witness function of ∆ω1 for
lcr = 0.9× tb at floor one.

To illustrate reasons for the results in Fig. 7.10, Fig. 7.8 presents a comparison of the

output distributions from the ‘true’, original simulator and subfunction discrepancy

method. The distributions are of ∆ω1 when both damage types are located at

floor one, where f = 1, and crack length is increased. Figure 7.8 shows that for

lcr = 0, 0.1, 0.2 × tb all three distributions are overlaid with little difference in the

probability mass. As the crack length increases further, a shift in the output mean of

the original simulator occurs in Fig. 7.8, leading to a rejection in the null hypothesis.
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The subfunction discrepancy technique provides a good fit with the ‘true’ full-system

until lcr = 0.9× tb, where the true system has a smaller variance — the percentage

difference of the mean and variance at this damage extent are 0.2% and 737.4%. These

differences are highlighted in Fig. 7.11, where the witness function, the difference

between two kernel mappings of the samples [45, 131], is presented. The witness

function was generated using a Gaussian kernel where the scale parameter σ, was

set using a median heuristic. The witness function provides a visual illustration the

offset in mean and smaller variance.

7.4 Conclusion

A multi-level uncertainty integration strategy based on a subfunction discrepancy

approach has been demonstrated. The strategy seeks to divide a structure into

different levels and sub-systems where validation of damage mechanisms is achievable.

At each of these sub-systems model discrepancies are inferred in order to improve the

predictive capability of the simulator. Finally, the sub-system model discrepancies

and parameter uncertainties are propagated through to the full-system level providing

confidence in predictions at a full-system level.

A numerical case study has been presented demonstrating the technique on a simple

four degree-of-freedom shear structure. The objective of this study was to predict

damage sensitive features — percentage differences of natural frequencies — when

two types of damage were introduced to the structure, namely a midpoint crack of

increasing length and a reduction in clamping force at the joint for various positions

in the structure. The full-system was divided into one level where there were two

sub-systems: a beam sub-system and a joint sub-system. At each of these sub-

systems experimental data was generated from the ‘true’ process with the addition

of observational uncertainty and model discrepancies inferred between simulator

outputs and the experimental data. The uncertainties and model discrepancies were

propagated to the full-system level where, due to the numerical nature of the case

study, a comparison was made with the ‘true’ outputs. Hypothesis testing was

performed on the output distributions for the 6400 combinations of inputs. This

demonstrated that the multi-level uncertainty strategy had improved the predictive

performance from 26.2% to 97.5% (of not rejecting the null hypotheses). In terms of

mean predictions, the strategy improved NMSEs from 93.57 to 0.002. The enhanced
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predictive capability clearly indicates the benefits of this approach for the case study.

Further research should be conducted into applying the methodology to a real world

case study and for different types of simulator and model fidelities. The approach

should also be applied with different divisions of a structure in order to quantify

the differences in outputs due to the initial set up of the technique. Additionally,

demonstration of the process with calibration included is left as further work. Finally,

the inclusion of hetroscedastic GPs to better capture the model discrepancies from

hetroscedastic experimental data should be pursued.





Chapter 8

Discussion and Conclusions

This thesis was motivated by the development of an alternative model-based approach

to SHM whereby simulators were utilised in a forward manner in generating training

data for machine learning models, defined as forward model-driven methods. The

aim of establishing this framework was to provide solutions to current issues with

both data-driven and model-driven strategies, namely the lack of available damage

state data and inferring the health state from updated parameters, as presented in

Chapter 1.

Chapter 2 proposed a framework for forward model-driven SHM constructed from

two key components: developing a simulator that is capable of predicting outputs

for various health states that are statistically representative of those obtained from

in-service data, and defining a machine learning methodology that robustly infers

decision bounds between health states. This emphasis on generating simulators

that produce representative predictions highlighted three key challenges to realising

forward model-driven SHM, and hence were the focus of this research.

Firstly, a clear definition of what a valid predictive output is must be established, that

is, a clear quantification that the simulator is adequate for training a robust decision

bound within the chosen machine learning method. Chapter 3 sought to tackle this

problem, outlining that a valid prediction would be one in which a simulator output

could be considered to be from the same statistical distribution as the in-service

data. As a consequence a validation strategy that considered probabilistic prediction

was developed, involving hypothesis testing, statistical distance metrics, such as

201
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distribution based distances, visual diagnostics, e.g. witness functions, and where

appropriate any deterministic metrics. The components of this strategy aimed to

diagnose issues within the predictive distributions and could be used to aid decisions

on whether model selection, new test strategies or simulator evaluations were required.

Secondly, the simulator predictions must account for uncertainties introduced by

model discrepancy. This was deemed important in realising valid predictions from

simulators as without corrections for model form errors caused by missing physics,

simulator outputs could be far those observed. In addition, calibration without

considering model discrepancy will lead to bias in the inferred parameter set, and will

have no guarantees in identifying the ‘true’ parameter distribution. This becomes

especially problematic if these identified parameters are incorporated in a multi-level

uncertainty integration strategy. Two techniques were investigated that incorporate

mechanisms which account for model discrepancy, by inferring its functional form,

namely BCBC and BHM in Chapters 5 and 6 respectively. The two approaches

provide different frameworks for calibration, with BCBC attempting a Bayesian solu-

tion whereby the posterior parameter distribution and model discrepancy are jointly

inferred. In contrast BHM, an approximate Bayesian method (a sub-class of ABC),

separates out the inferences, with the approximate posterior parameter distribution

inferred by assuming a uniform additive model discrepancy. Subsequently, model

discrepancy can be inferred based on a proposed importance sampling methodology

which is akin to performing Bayesian model averaging. When the assumption that

model discrepancy is uniform and additive holds, the BHM-importance sampling

approach offers a solution to the non-identifiability problems associated with BCBC

by decoupling the inference process.

Thirdly, validation without obtaining full-system level data must be achieved. This is

a significant challenge in making forward model-driven methods a solution to the lack

of available full-system damage data problem. In order to approach this issue, an

investigation into multi-level uncertainty integration via a subfunction discrepancy

approach was undertaken in Chapter 7. The developed technique divides a structure

into levels of sub-systems that capture the relevant damage mechanisms of interest.

The assumption is that by capturing the damage physics at these sub-system levels,

calibration and model discrepancy inferences can occur based on more easily obtained

experimental data. Once calibrated the model form corrections and uncertainties can

be propagated through to the full-system, where the validated damage functions are

assumed to hold. By separating out the inferences to each sub-system the problem
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becomes more computationally manageable, and allows for individual sub-systems

to be recalibrated, without performing inference at all levels and sub-systems if new

data is obtained.

These technologies and strategies provide potential solutions to the aforementioned

main challenges for realising forward model-driven SHM. The sections below present

details of the important conclusions from the work presented in this thesis. Further-

more, limitations of the methodologies defined within each chapter are discussed

before future work is outlined. Finally, the author’s opinion about the future direc-

tions for forward model-driven SHM are described.

8.1 Conclusions

As highlighted, validation is perhaps the most challenging aspect of gaining confidence

in an SHM system. It becomes increasingly important when simulator predictions

are the only evidence for patterns between health states. Without valid predictions

the inferred classifier would be extremely dangerous to implement on any real world

structure, as there would be no confidence that the labels are assigned based on

the real system’s damage physics. Chapter 3 sought to define within the context of

forward model-driven SHM a validated simulator. This definition revolved around

obtaining an understanding of adequacy for the uses of the simulator predictions,

specifically that of defining decision bounds. When incorporated in the training of

machine learning methods any differences in the key statistical moments, such as

offsets in the mean, inflation or under-estimate of the variance, etc. could lead to

confusion or inappropriately specified decision bounds. Consequently, a validated

simulator was established to be one in which its prediction could be determined to be

from the same statistical distribution as in-service data. This led to the development

of a validation strategy in which hypothesis testing, quantification using metrics

that consider full distributions, visualisation tools and deterministic metrics were

incorporated. These tools aimed to diagnose issues within the predictive distributions

and could be used to aid decisions on whether model selection, new test strategies or

simulator evaluations were required.

Hypothesis testing methods were presented using both KS-, MMD- and Bayesian

hypothesis tests. In addition, distribution-based distance metrics were defined, cate-

gorising existing validation metrics — such as the area metric — within the statistical
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distances terminology. Through numerical examples it was demonstrated that the

total variation distance was most sensitive to differences between distributions, fol-

lowed closely by the Hellinger and MMD distances. KL-divergence was found to be

difficult to interpret but relatively effective in determining whether replication of a

target distribution with a proposed alternative was impossible. The area metric was

found not to be particularly sensitive to differences between distributions. However,

the area metric has the same units as the quantity being analysed, and for this reason

is particularly useful. Furthermore, the Kolmogorov distance is mostly sensitive to

changes in the central probability mass, meaning that KS-tests are suboptimal when

differences in the distributions are contained within the tails. Moreover, MMD two

samples tests provide a non-parametric method for comparing two sets of samples

and are sensitive to multiple types of differences between distributions, making this

test more robust in most applications. More than that, MMD provides a method for

visually determining the differences between two distributions through the witness

function. This offers a powerful method for interrogating a simulator predictions

validity.

Many of the techniques incorporated within a forward model-driven strategy involve

interrogating a simulator over a large parameter domain. Given that simulators are

often computationally expensive to evaluate, cheap surrogate emulators were investi-

gated in Chapter 4. These technologies are vital in making the statistical methods

presented in this thesis computationally practical. The merits and disadvantages of

several emulator constructions were discussed, culminating in the selection of GP

emulators as a robust tool for developing surrogate models. This was due to GPs

containing built in regularisation, within the formulation of the marginal likelihood,

preventing the tool from overfitting. In addition, the Bayesian formulation provides

a quantification of code uncertainty, an important characteristic in determining the

emulator performance and information about where simulator evaluations may aid

inference of the underlying function.

When emulating a deterministic simulator, emulator predictions should replicate

known simulator outputs with no code uncertainty. Mathematically a GP will

achieve this requirement. However, practical implementation can lead to poorly

conditioned covariances matrices within the inference process, causing either the

covariance not to be invertible or numerical instabilities to occur in the inversion.

The addition of a nugget term was therefore implemented to resolve these numerical

issues, although it is recognised that this may lead to type-II MLE solutions being
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the most likely. In light of this, a penalty term was introduced, removing the type-II

mode of the NLML and forcing the emulator to fit known simulator evaluations

exactly. Diagnostics and validation tools were defined for GP emulators, ensuring

that the model form and inferred parameters were appropriate. A numerical example

was demonstrated in Chapter 4 in order to demonstrate the use of these diagnostics.

Another implementation consideration is how to generate training data from simulator

evaluations that will aid the inference of the GP emulator. GMLHCs were introduced

offering a methodology for generating computer DoEs that reduce the emulator’s

code uncertainties near the edge of the parameter domain. This approach was shown

to be more effective than alternative LHC-based designs.

The formulation of GP emulators in scenarios where the parameter space was large,

or time series data was part of the training set, were investigated. In these scenarios

the number of training points may become large even for a small number of simulator

evaluations. A comparison of sparse GP formulations and their applicability to

surrogate modelling was investigated. Two categories of approach were compared —

model and posterior approximations — where it was demonstrated on a numerical

example that model approximations lead to overfitting issues. PEP formulations

were found to be a universal framework for considering model and posterior approxi-

mations, with the limits being the FITC and VFE approaches. Concerns were raised

about the practicalities of sparse methods in performing emulation. These concerns

arose from the fact that a noise term is incorporated as part of the posterior approx-

imation formulations, leading to type-II solutions. This results in GP predictions

not reproducing known simulator evaluations exactly and with no code uncertainty.

Finally, other GP extensions for multiple output, stochastic simulators and dynamic

processes were described, showing the potential improvements to the GP emulator

framework.

Chapters 5 and 6 describe two methods — BCBC and BHM — for calibrating

simulators when model discrepancy is present and inferring its functional form.

BCBC utilises two GP models in order to jointly perform Bayesian inference on

both the estimate parameters and the model discrepancy term. An issue with the

approach is that the prior assumption that the model discrepancy is distributed

as a GP proves to be too flexible when part of a joint inference process with the

parameters. This causes non-identifiability issues, leading to a lack of confidence in

the inferred parameter distribution. In forward model-driven SHM the method may

be applicable when only forward predictions are required, and the inferred parameters
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are not utilised. In this scenario the corrected output predictions would be useful

in the validated domain, but the simulator could not be trusted to extrapolate.

BCBC was applied to two representative building structures in which it was found

to have adequate performance, outperforming Bayesian calibration (without bias

correction) for a three storey representative building structure. Furthermore it was

found that both Gauss-Hermite quadrature and adaptive Metropolis MCMC provided

similar predictive results and inferred posterior distributions, where Gauss-Hermite

quadrature is computationally more efficient in low dimensional problems.

BHM provides an approximate Bayesian method for calibrating simulators whilst

accounting for model discrepancy. The rejection based technique removes parts

of the input space based on implausibility metrics. By construction these metrics

incorporate the possibility of model discrepancy via an additional variance term. The

method will perform exact Monte Carlo inference given an additive uniform model

discrepancy, given that it is a sub-category of ABC. Approximate posterior parameter

distributions have been demonstrated to be obtainable through importance sampling.

This means that inference of the parameter distribution can be performed separately

to that of the model discrepancy, unlike BCBC, improving non-identifiability issues.

As BHM is performed in an iterative manner, where the simulator is evaluated at new

locations until the code uncertainty of the emulator is below the prior observational

and model discrepancy uncertainties, sequential design methods can be incorporated

into the framework. Here two heuristics were developed, namely probability of

non-implausibility and expected (un)improvement. It was found that probability

of non-implausibility exploited known non-implausible locations well, but failed to

efficiently explore the full parameter domain. Expected (un)improvement on the

other hand had a better balance between exploitation and exploration. Alternative

sequential methodologies using information-based metrics were discussed but left as

an area of further research. In addition, within the BHM framework the parameter

domain is sampled. Although not explored in this thesis, improved sampling methods,

such as an SMC-BHM methodology could allow more efficient sampling of this

parameter domain.

A further extension to the BHM methodology was proposed, inferring functional

model discrepancy uncertainties using importance sampling. Although specifically

applied to the BHM parameter posterior distributions this could in theory be applied

to any scenario where the simulator parameter distributions are known. The tech-

nique, akin to Bayesian model averaging of multiple GP regression models, can be
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applied with both MLE estimates and marginalisation of the GP hyperparameters.

It was demonstrated that although the empirical Bayes form provided closer predic-

tive distributions to that of the dual-importance sampling technique, the reduced

uncertainty in the hyperparameters may lead to overconfidence in certain scenarios.

These methods were applied to a representative building structure whereby the mean

predictions were shown to be in agreement with the observational data. Unfortunately

the rigorous handling of the model discrepancy and hyperparameter uncertainties

led to increased predictive variance. Despite this problem, the technique can be used

to inform improved model selection and with iterations of this process may lead to

valid predictions. Furthermore, the case study used three samples in the inference

stage and with more data the predictive distributions should improve.

A considerable difficulty in developing a forward model-driven SHM strategy is

establishing a technique for producing validated predictions when full-system health

state data is unavailable. Chapter 7 aimed to investigate this issue through the devel-

opment of a multi-level uncertainty integration technology. As a result a subfunction

discrepancy technique was developed and applied to a numerical shear structure.

The approach seeks to divide the full-system mathematically into subfunctions where

calibration can be performed, identifying the uncertainties and model form errors

at these sub-system levels. The method assumes that the physics governing the

introduction of damage can be adequately captured at a sub-system level, and when

propagated through to a full-system level produce valid predictions. The subsequent

application of the method to a shear structure under two sources of damage, mod-

elled by two sub-system simulators, demonstrated the potential for this technique.

97% of the predictive distributions for the 6400 combinations were valid when the

subfunction approach was applied, this is in contrast to just 26.2% when model

discrepancies were not considered.

8.2 Limitations

Several limitation have been established through the course of this thesis. Firstly,

it was observed that validation, even when expressed through quantified objective

metrics, is subject to a degree of subjectivity. Ultimately it is up the modeller,

experimentalist and those with interests in the SHM system to decide upon their

interpretation of results. Ideally an independent body would determine, based on
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validation metrics, the validity of the predictions.

Even when the objective is to create predictions from the same underlying distribu-

tion as observational data several limitations arise. Firstly, one must obtain enough

observational data as to have adequate information to define the underlying distribu-

tion. Rarely in SHM will this be the case, even at a sub-system level. This means

that validation statements are only as good as the statistical interpretation of the

data, and if the observation set contains multiple outliers, incorrect conclusions could

be drawn. Moreover hypothesis testing, in a frequentist sense, requires a definition of

statistical significance. Within the hypothesis testing literature there is much debate

on how to set this value, as well as the general usefulness of hypothesis testing for

determining whether two samples are drawn from the same distribution. Linked to

these problems are the difficulties in evaluating statistical distances. Most of the

formulations outlined in this thesis require knowledge of density functions, which

may not always be known. Non-parametric distances such as the MMD distance

provide a degree of solution, however, in practice the RKHS embedding requires

numerous samples in order to encode an accurate representation. Furthermore,

interpretation of distances, even when bounded to a unit interval can be challenging,

causing additional subjectivity in establishing whether an output is valid.

GP emulators are identified based on a set of training data. This set must be

representative of the underlying function that is to be modelled. Problems may

arise in certain scenarios, for example where the function is sub-sampled, and these

will often produce a model that fails to capture the underlying state. A thought

experiment can be conducted to verify this outcome. Imagine the simulator is a

sinusoidal function at a single frequency, where evaluations have been obtained

at that frequency. This would lead to the simulator producing the same output

for each run. Given these evaluations the only reasonable model to construct is

a horizontal constant prediction. This would therefore fail to capture the ‘true’

underlying function, which is a sinusoid. This is a general problem for any black-box

emulator, but also applies to GPs. Solutions to this problem are to collect a more

representative training set, or to incorporate any knowledge about the expected

functional form into the mean and covariance functions. However, these solutions

may not always be practical, i.e. it is hard to determine if the training set is truly

representative, and limited knowledge of the simulators functional form are often

know prior to obtaining multiple evaluations. Furthermore, diagnostic metrics will

only identify these problems if the information is contained within the validation
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set, which again may not be the case. Limitations also arise in implementing sparse

GP formulations as emulators. The key issue is that posterior approximations,

although not susceptible to overfitting, incorporate a noise component as part of

the approximation. This will lead to known simulator evaluations not being fitted

exactly in cases with no code uncertainty.

Non-identifiability problems are a challenge to all calibration methods. BCBC

suffers particularly from these issues when the prior for the model discrepancy is an

unconstrained GP. The GP assumption is generally too flexible for most applications

and will mean that numerous parameter solutions can become more likely than

is realistic. BHM, although removes this particular problem, is founded on the

assumption that model discrepancy is uniform. This is often not appropriate for most

applications, meaning that there are no guarantees that the inferred approximate

parameter posteriors are not biased. In addition, model discrepancy inference via

importance sampling involves constructing multiple GP models. This may become too

computationally expensive in applications where their are a high level of observations

— although this is not expected to be the case in most SHM scenarios.

Central to the subfunction discrepancy approach is the assumption that a structure

can be divided into sub-systems where the damage physics can be captured in

isolation to the remaining structure. This may be too strong an assumption in

most scenarios. The process also relies on being able to obtain data at each of

these sub-systems, and that these divisions are practically achievable. Furthermore,

interactions between sub-systems may be too challenging to model at all, and may

lead to large model discrepancy uncertainties. When this is the case extrapolation

will be problematic as the inferred GP models will return to the prior outside of the

training data.

8.3 Future Work

Several areas of further work are envisaged both as solutions to the limitations and as

general extensions to the described approaches. Firstly, the aforementioned technolo-

gies should be incorporated in a complete implementation of forward model-driven

SHM and rigorously compared to both state-of-the-art inverse model-driven and data-

driven techniques. It is hoped that forward model-driven SHM will provide similar

results to a data-driven method and outperform inverse model-driven approaches.
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Within the validation work, further research should be conducted into other hy-

pothesis testing and statistical distance metrics, and their applicability to validating

probabilistic simulator predictions. In particular it has been highlighted that the

KSD, a non-parametric one-sample test, should be investigated.

Various GP technologies were outlined within Chapter 4 that were not investigated.

In particular multivariate GP formulations would offer better prior assumptions for

most multiple output simulators; as often the outputs are mathematically correlated.

Dynamic GP formulations may also prove useful when emulating and calibrating

dynamical system. Furthermore, methods for determining how representative training

data is of the underlying simulator should be investigated, helping to resolve the

limitation previously mentioned.

Constraints, and better prior representations when modelling the model discrepancy

as a GP should be considered. This would help resolve the non-identifiability problems

within BCBC but would also improve model discrepancy inference in BHM and the

subfunction discrepancy approach. All these methods should be applied to more

complex case studies in order to evaluate their effectiveness when a high dimensional

parameter space and complex model discrepancy exist.

Several extensions to BHM should be investigated. These include improving the

parameter domain sampling technique by incorporating knowledge from previous

waves, potentially in an SMC-BHM formulation. Additionally, entropy-based sequen-

tial designs should be employed within the BHM framework. This would provide a

more rigorous methodology for determining simulator evaluations.

There are more potential approaches to the multi-level uncertainty integration

problem. The subfunction method should be applied to a real world case study, and a

more general methodology for sub-system division identified. Finally, hetroscedastic

GP formulations should be implemented, where it is expected that model discrepancy

inferences and therefore full-system predictions will improve with more accurate

estimations of the feature uncertainty.
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8.4 Future Directions for Forward Model-Driven

Structural Health Monitoring

Forward model-driven SHM has been demonstrated to have significant potential in

solving the drawbacks in both inverse model-driven and data-driven SHM. Although

this thesis outlines several technologies for realising forward model-driven SHM,

future work is still required. Key topics to be investigated are developing more

accurate damage models and establishing a robust model selection framework in

which information from model discrepancy inference can be used to improve model

form errors. The generation of simulators also provides a mechanisms for identifying

damage sensitive features. This is a large area of further research that will also

aid all approaches to SHM. More work is required in developing monitoring system

design based on these validated simulators.

Potential new approaches to semi-supervised learning are also available, with simu-

lators providing a method of generating labels without need for direct supervision.

Likewise, Bayes risk approaches that are formulated specifically based on feature

vector distributions from simulators should be developed; providing an informative

method for communicating probabilistic health decisions to asset managers.

Not addressed in this thesis are how decisions in the framework should be made,

particularly when to obtain more validation data, when to perform more simulator

evaluations and when model selection should be pursed. Defining these processes

based on the reduction of uncertainty and increase in predictive performance should

be investigated.

Finally, future work should continue to purse rigorous and robust methods for

generating full-system simulator outputs that are valid, based only on data sources

that do not include those at a full-system level. Multi-level uncertainty integration is

a challenging task and will require further developments in order for approaches to be

generally applicable across any structure without complex and bespoke construction.

The proposed forward model-driven framework is a promising approach to SHM,

which may not only provide solutions to issues associated with current methodolo-

gies, but may also help improve those existing technologies in identifying damage

sensitive feature and creating monitoring systems that maximise the probability of

detecting damage. It is hoped that this category of approach to SHM receives wider
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investigation in the SHM community.



Mathematical Background

A.1 Probabilities and Bayes’ Theorem

Joint probability : given two sets of events A and B the joint probability p (A ∩B) is

the probability of both occurring. If event A and B are two sets of N continuous

outcomes or measurement e.g. yA = {y1, . . . , yN} then assuming for each event the

measurements have a joint probability (specifically a PDF) e.g. p (y1, . . . , yN) =

p (yA) the joint between the events can be written p (y) = p (yA,yB).

Marginal Probability : given a joint probability p (yA,yB) it may be desired to know

the probability of a single event. This is performed by integrating out one event

from the joint probability i.e. p (yA) =
∫
p (yA,yB)dyB. This can be performed on

probabilities governing multiple events, which can lead to the marginal also being a

joint probability. Independence is defined for joint distributions that are composed

of a product of marginal distributions for each event, i.e. that each event does not

affect the other, the converse is a dependence.

Conditional Probability : given that event B has occurred what is the probability

of event A happening p (A |B). This can also be summarised as the likelihood of

event A given event B. A conditional distribution can be calculated via the ratio

p (yA |yB) = p (yA,yB)/p (yB) when p (yB) > 0. An independent variable will lead

to the marginal and the conditional being equal.
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Bayes’ Theorem: by simply combing the two conditionals p (yA |yB) and p (yB |yA)

(and p (yB) > 0) Bayes theorem is defined:

p (yA |yB) =
p (yB |yA)p (yA)

p (yB)
(A.1)

In words this can be written as:

Posterior =
Likelihood× Prior

Evidence
(A.2)

Where the prior is ones initial belief about the event yA occurring. The likelihood is

probability that of observing some outcome yB given the event yA. The evidence or

marginal probability of event yB occurring is often calculated via integrating out

event yA from the numerator. The posterior is the probability of event yA given

that we have witnessed yB.

Conditional and marginal probabilities therefore sit as key building blocks for any

Bayesian analysis.

A.2 Gaussian Identities

Multivariate Gaussian Distribution:

N (x |µ,Σ) = (2π)−D/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A.3)

Where µ and Σ are the mean and covariance of size N and N ×N .

Conditional of Joint Gaussian Distribution: a joint Gaussian distribution of the

random variables x1 and x2 is,

[
x1

x2

]
= N

([
µ1

µ2

]
,

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

])
. (A.4)

The conditional distribution is,



p (x1 |x2) ∼ N
(
µ1 + Σ1,2Σ−1

2,2(x2 − µ2),Σ1,1 − Σ1,2Σ−1
2,2Σ2,1

)
(A.5)

Product of Two Gaussian Distributions : the product of two Gaussian distributions for

the same random variable produces another Gaussian distribution with an additional

constant,

N (x |µ1,Σ1)N (x |µ2,Σ2) = ZN (c, C) (A.6)

c = C(Σ−1
1 µ1 + Σ2

−1µ2) (A.7)

C = (Σ1
−1 + Σ2

−1)−1 (A.8)

Z = (2π)−D/2|Σ1 + Σ2|−1/2 exp

(
−1

2
(µ1 − µ2)T(Σ1 + Σ2)−1(µ1 − µ2)

)
. (A.9)

A.3 Matrix Identities

Woodbury Inversion Lemma:

(A+ UCV T)−1 = A−1 + A−1U(C−1 + V TA−1U)−1V TA−1 (A.10)

Cholesky Inversion:

The Cholesky decomposition,

A = LLT (A.11)

where L is the Cholesky factor (a lower triangular matrix) useful in solving linear

systems, i.e. Ax = b where A is positive definite. The approach is numerically stable

and the log determinant of A can be calculated using:



log |A| = 2
N∑
i=1

logLi,i. (A.12)

A.4 Bayesian Calibration and Bias Correction In-

tegrals

Here the closed form solutions to the integrals in stage 2 of BCBC outlined in

Section 5.2.2 are formed when:

• The emulator mean function is constant: Hη(·) = 1

• The emulator covariance function is a separable SE:

Kη(·, ·) = σ2
η exp

(
−(x− x′)TΩx(x− x′)

)
exp

(
−(t− t′)TΩt(t− t′)

)
• The prior for the parameters is Gaussian: θ ∼ N (mθ, Vθ)

The mean function integrals are:

a) ∫
Hη(Dz,i(θ))p (θ)dθ = 1

∫
p (θ)dθ = 1 (A.13)

b)∫
Kη (Dz,i(θ), Dy,j)

T p (θ)dθ =

∫
σ2
η exp

(
−(xzi − xj)TΩx(x

z
i − xj)

)
exp

(
−(θ − tj)TΩt(θ − tj)

)
N (mθ, Vθ)dθ (A.14)

Part of the covariance function is not dependent on θ and is constant resulting in

Eqs. (A.15) and (A.16).

Ck = σ2
η exp

(
−(xzi − xj)TΩx(x

z
i − xj)

)
(A.15)



∫
Kη (Dz,i(θ), Dy,j)

T p (θ)dθ = Ck

∫
exp

(
−(θ − tj)TΩt(θ − tj)

)
N (mθ, Vθ)dθ

(A.16)

The expression of the covariance function dependent on θ can be expressed as a

Gaussian distribution Eq. (A.17).

(2π)n/2|(2Ωt)
−1|−1/2

(2π)n/2|(2Ωt)−1|−1/2
exp

(
−1

2
− (θ − tj)T(2Ωt)(θ − tj)

)
=

1

(2π)n/2|(2Ωt)−1|−1/2
N
(
tj, (2Ωt)

−1
)

(A.17)

As a result the integral is the product of two Gaussian distribution multiplied by a

constant.

∫
Kη (Dz,i(θ), Dy,j)

T p (θ)dθ =

Ck
(2π)n/2|(2Ωt)−1|−1/2

∫
N
(
tj, (2Ωt)

−1
)
N (mθ, Vθ)dθ (A.18)

The product of two Gaussian distributions is an unnormalised Gaussian distribution as

shown in Appendix A.2 i.e. N (tj, (2Ωt)
−1)N (mθ, Vθ) = ZN (µ,Σ). The normalising

constant Z is shown in Eq. (A.19).

Z = (2π)−n/2|Vθ + (2Ωt)
−1|−1/2 exp

(
−1

2
(mθ − tj)T(Vθ + (2Ωt)

−1)−1(mθ − tj)
)

(A.19)

As the integral
∫
N (µ,Σ)dθ = 1, meaning that the marginalisation integral is equal

to the product of the constants.

∫
Kη (Dz,i(θ), Dy,j)

T p (θ)dθ =
CkZ

(2π)n/2|(2Ωt)−1|−1/2
(A.20)



Equation (A.20) simplifies to Eq. (A.21).

σ2
η|I + 2VθΩt|−1/2 exp

(
−(xzi − xj)TΩx(x

z
i − xj)

)
exp

(
−(mθ − tj)T(Vθ + (2Ωt)

−1)−1(mθ − tj)
)

(A.21)

The covariance function integrals are:

c) ∫
Kη (Dz,i(θ), Dz,j(θ)) p (θ)dθ =

∫
σ2
η exp

(
−(xzi − xj)TΩx(x

z
i − xj)

)
exp

(
−(θ − θ)TΩt(θ − θ)

)
N (mθ, Vθ)dθ (A.22)

The only part of the covariance function dependent on θ contains (θ−θ) = 0, leading

to Eqs. (A.23) and (A.24).

∫
Kη (Dz,i(θ), Dz,j(θ)) p (θ)dθ = σ2

η exp
(
−(xzi − xj)TΩx(x

z
i − xj)

) ∫
N (mθ, Vθ)dθ

(A.23)

∫
Kη (Dz,i(θ), Dz,j(θ)) p (θ)dθ = σ2

η exp
(
−(xzi − xj)TΩx(x

z
i − xj)

)
(A.24)

d)∫
Kη (Dz,j(θ), Dy,k)Kη (Dz,i(θ), Dy,l)

T p (θ)dθ =∫
σ2
η exp

(
−(xzj − xk)TΩx(x

z
j − xk)

)
exp

(
−(θ − tk)TΩt(θ − tk)

)
σ2
η exp

(
−(xzi − xl)TΩx(x

z
i − xl)

)
exp

(
−(θ − tl)TΩt(θ − tl)

)
N (mθ, Vθ)dθ (A.25)

Again by collecting the constants in Eq. (A.26) and forming Gaussian distributions

from the remaining two covariance functions dependent on θ, the problem becomes

the integral of the product of three Gaussian distributions in Eq. (A.27).



Ck = σ4
η exp

(
−(xzj − xk)TΩx(x

z
j − xk)

)
exp

(
−(xzi − xl)TΩx(x

z
i − xl)

)
(A.26)

∫
Kη (Dz,j(θ), Dy,k)Kη (Dz,i(θ), Dy,l)

T p (θ)dθ =

Ck
((2π)n/2|(2Ωt)−1|−1/2)2

∫
N
(
tk, (2Ωt)

−1
)
N
(
tl, (2Ωt)

−1
)
N (mθ, Vθ)dθ (A.27)

The first product (using Appendix A.2) is N (tk, (2Ωt)
−1)N (tl, (2Ωt)

−1) = Z1

N
(
(tk + tl)/2,Ω

−1
t /4

)
and the second product Z1N

(
(tk + tl)/2,Ω

−1
t /4

)
N (mθ, Vθ) =

Z1Z2N (µ,Σ). As this single Gaussian distribution integrates to one the marginali-

sation integral is the product of the constants shown in Eq. (A.28).

∫
Kη (Dz,j(θ), Dy,k)Kη (Dz,i(θ), Dy,l)

T p (θ)dθ =
CkZ1Z2

((2π)n/2|(2Ωt)−1|−1/2)2
(A.28)

Equation (A.28) simplifies to Equation (A.29).

σ4
η|I + 4VθΩt|−1/2 exp

(
−(xzj − xk)TΩx(x

z
j − xk)− (xzi − xl)TΩx(x

z
i − xl)

)
exp

(
−1

2
(tk − tl)TΩt(tk − tl)−

1

2

(
mθ −

tk + tl
2

)T(
Vθ +

Ω−1
t

4

)−1(
mθ −

tk + tl
2

))
(A.29)

e) ∫
Hη (Dz,j(θ))Hη (Dz,i(θ))T p (θ)dθ = 1 (A.30)



f) ∫
Kη (Dz,j(θ), Dy,k)Hη (Dz,i(θ))T p (θ)dθ = σ2

η|I + 2VθΩt|−1/2

exp
(
−(xzj − xk)TΩx(x

z
j − xk)

)
exp

(
−1

2
(mθ − tk)T(Vθ + (2Ωt)

−1)−1(mθ − tk)
)

Eθ
(
Hη (Dz,i(θ))T

)
(A.31)

This results from the same process as b) however includes the expectation of the

design matrix with respect to θ, Eθ
(
Hη (Dz,i(θ))T

)
. When a constant mean function

is implemented this term equals one.

g)∫
Hη (Dz,j(θ))Kη (Dz,i(θ), Dy,l)

T p (θ)dθ = σ2
η|I + 2VθΩt|−1/2

exp
(
−(xzi − xl)TΩx(x

z
i − xl)

)
exp

(
−1

2
(mθ − tl)T(Vθ + (2Ωt)

−1)−1(mθ − tl)
)

Eθ (Hη (Dz,j(θ))) (A.32)

A.5 Golub-Welsch Algorithm

The weights and nodes for the Gauss-Hermite quadrature can be calculated using

the Golub-Welsch algorithm [148]. This method uses the recurrence relationship of a

set of orthogonal polynomials (φi(x)) shown in Eq. (A.33).

φj(x) = (ajx+ bj)φj−1(x)− cjφj−2(x) (A.33)

Where j = 1, · · · , N − 1; φ−1(x) = 0 and φ0(x) = 1. This form can be used to

construct the matrix equation in Eq. (A.34).

xφ(x) = Tφ(x) + φN(x)/aNe (A.34)

Where φ is the vector [φ0(x), ..., φN−1(x)]T, T is a matrix of the coefficients aj, bj

and cj and e = [0, · · · , 1]T. By performing a diagonal similarity transformation the



tridiagonal matrix J is constructed.

DTD−1 = J =



α1 β1 0

β1 α2 β2

0 β2 α3

. . .

αN−1 βN−1

βN−1 αN


(A.35)

Where the coefficients are, αj = − bj
aj

and βj =
√

cj+1

ajaj+1
.

This leads to the matrix equation,

Jφ(xi) = xiφ(xi), (A.36)

where xi are the nodes of the Gaussian quadrature which are the eigenvalues of J .

The weights wi can be determined from the eigenvectors of J as in Eq. (A.37).

wi = β0
v2
i

||vi||22
(A.37)

Where,

β0 =

∫ a

b

w(x)dx. (A.38)

Here w(x) is the weight function of the Gaussian quadrature, a and b the Gaussian

quadrature limits and vi is the ith eigenvector.
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