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Abstract
The practical application of structural health monitoring is often limited by the availability of labelled data. Transfer
learning – specifically in the form of domain adaptation (DA) – gives rise to the possibility of leveraging information from a
population of physical or numerical structures, by inferring a mapping that aligns the feature spaces. Typical DAmethods rely
on nonparametric distance metrics, which require sufficient data to perform density estimation. In addition, these methods
can be prone to performance degradation under class imbalance. To address these issues, statistic alignment (SA) is
discussed, with a demonstration of how these methods can be made robust to class imbalance, including a special case of
class imbalance called a partial DA scenario. Statistic alignment is demonstrated to facilitate damage localisation with no
target labels in a numerical case study, outperforming other state-of-the-art DA methods. It is then shown to be capable of
aligning the feature spaces of a real heterogeneous population, the Z24 and KW51 bridges, with only 220 samples used
from the KW51 Bridge. Finally, in scenarios where more complex mappings are required for knowledge transfer, SA is
shown to be a vital pre-processing tool, increasing the performance of established DA methods.
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Introduction

The data-driven approach to structural health monitoring
(SHM) is often limited by availability of labelled data.1

Unsupervised machine learning techniques have been used
to detect the presence of damage by utilising outlier anal-
ysis.2 However, SHM-frameworks that allow for data to be
categorised as a specific health-state largely rely on su-
pervised statistical models, preventing their application in
practical scenarios. This issue motivates the leveraging of
information from a population of structures, giving rise to a
new discipline – population-based SHM (PBSHM).3–5 By
considering labelled information across a population of
structures, it is more likely that the shared label information
would be adequate to facilitate more reliable and detailed
diagnostics.

A critical challenge in PBSHM is that data acquired from
different structures will differ in their underlying distribu-
tions, invalidating the assumption that the training and
testing data were drawn from the same distribution – an
assumption that conventional machine learning models
typically make.6 Variation in the data distributions will
occur for a number of reasons; in homogeneous populations
(i.e. nominally identical structures), manufacturing

variations and operating conditions will lead to differences.
Populations of structures that cannot be considered nomi-
nally identical – heterogeneous populations4 – may also
differ significantly because of structural differences. One
approach is to utilise information from across a population
is to infer a mapping that aligns the feature spaces.

Domain adaptation (DA) – a sub-field of transfer
learning (TL) – aims to achieve this goal by learning a
mapping that aligns the distributions of the feature spaces,7

illustrated in Figure 1. As such, a statistical model that will
generalise well to a target structure (target domain), can be
learnt by using data from a source structure (source do-
main). Typically, these technologies are based on distri-
bution distance metrics, which learn a mapping via
nonlinear kernels8–11 or deep neural networks (DNN).12–18
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Other approaches align subspaces, assuming that they lie on
a common manifold.19

These technologies have the potential to advance SHM
and facilitate more informative diagnostics. Chakraborty
et al. used TL to address the issue of sensor coverage in a
fatigue damage case.20 This application differs from the
current paper, which aims to transfer information between
structures. A large portion of the literature focusses on DNN
based DA, notably Xu et al. use a physics-informed deep-
DA approach to align the frequency response of multiple
structures to perform damage detection and quantification.21

There have also been a number of attempts to apply deep-
DA to perform fault diagnosis in machines under changing
loading conditions and rotation speeds.22–27 These works
focus on end-to-end DNNs (often convolutional neural
networks), with high-dimensional frequency responses used
as features; thus, because of the curse of dimensionality6

and the large number of parameters in these networks, large
quantities of data are required to train these methods such
that they generalise well. Conversely, this paper aims to
develop an approach to DA that can be applied with limited
data, as engineering datasets, particularly SHM datasets, are
often sparse and data are expensive to obtain. Another
approach that has been investigated focuses on fine-tuning
DNNs for image-based crack detection.28,29 This approach
differs from unsupervised DA, as it does not align the
domains and requires target labels.

Domain adaptation has also been demonstrated in a
PBSHM setting, Gardner et al. have shown that DA can be
used to transfer localisation labels between numerical and
experimental structures,30 two heterogeneous aircraft

wings31 and between pre- and post-repair states in aircraft
wings.32 In Bull et al., a population of six experimental
tailplanes was used to demonstrate transferring a damage
detector.33 These works have largely focused on methods
that rely on kernel-based nonparametric density estimation.
Nonparametric density estimation is known to require large
quantities of data to provide accurate estimates,34 which
may limit these DA approaches in practical SHM scenarios.

In addition, the existing approaches do not address issues
relating to class imbalance and partial DA. Class imbalance,
where the data quantity for each class is inconsistent, is
inevitable in SHM datasets because of the rarity of damage
and spurious environmental conditions.35 A specific class
imbalance scenario in TL called partial DA,36 refers to the
scenario where the target domain contains data pertaining to
fewer classes than the source, demonstrated in Figure 1. It is
crucial that DA methods that are robust to these issues are
developed since previously used methods are prone to
performance degradation in these scenarios.37,36 For fault
detection in machines, instance-weighting has been used to
achieve impressive classification improvement for partial
DA.38,39 However, these approaches also rely on DNNs and
to the best of the authors knowledge partial DA remains
uninvestigated in the context of SHM.

The main idea of this paper is that statistic alignment
(SA),40 a branch of DA that directly aligns the lower-order
statistics, can be used as a low-risk form of DA in scenarios
with limited data availability and engineering insight can be
used to adapt SA to address the issues with class imbalance
and partial DA. The main contributions of this paper are as
follows:

1. Statistic alignment is shown to perform effective
knowledge transfer where standard SHM, and the
major branches of DAmethods utilised in prior work
(manifold, kernel and DNNs) are ineffective when
standard practices for standardisation are followed.

2. An approach to SA utilising only normal-condition
data that is robust to class imbalance and partial DA
scenarios is proposed, along with two methods:
normal-condition alignment (NCA) and normal-
correlation alignment (NCORAL). These methods
are shown capable of adapting both numerical (shear
structures) and real heterogeneous populations (the
Z24 and KW51 bridges), demonstrating that this
approach could facilitate the use of supervised or
semi-supervised machine learning methods before
any damage has occurred in the target structure.

3. The limitations of SA are discussed; a case study
demonstrates that, when the higher-order statistics
differ significantly, further DA can be beneficial. It is
found that in this scenario, each of the major
branches of DA fail to adapt the domains following
standard practice for pre-processing, but they

Figure 1. Domain adaptation scenarios showing standard domain
adaptation in a and partial domain adaptation in b.
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succeed following SA, suggesting that SA is an
essential pre-processing step for the use of these
methods.

The proposed approach to DA in PBSHM is given in
Figure 2. The results in this paper suggest that SA should be
used as initial adaptation, after which a statistical model can
be learnt directly on the source domain, or further, DA could
improve adaption prior learning a statistical model. When
applying DA, there is a risk that performance is worse than
using the target alone;41 thus, this paper discusses why SA is
a low-risk form of DA in low data scenarios and when
further DA may be appropriate.

The outline of this paper is as follows. In section 2, the
necessary background is given on DA and SA. The dis-
advantages of conventional DA are discussed in regard to
data availability, class imbalance and partial DA, and the
proposed approach that aligns the domains using only
normal-condition data is introduced. Section 3 demonstrates
that SA can transfer label information between numerical
structures in both conventional DA and partial DA, where
previously investigated DA methods fail, and it is shown
that the proposed methods are particularly robust for partial
DA. In Section 4, the application of NCORAL is discussed
for a real population bridges, the Z2442 and KW51
bridges.43 This population presents two partial DA sce-
narios, which include three domains pertaining to the two
heterogeneous bridges, as well as, a pre- and post-repair
state in the KW51 bridge dataset. Section 5 discusses the
limitations of only aligning the lower-order statistics and
introduces SA as a pre-processing step for other prominent
DA algorithms, with another numerical case study sug-
gesting that SA may be an essential pre-processing step for
the application of many DA algorithms. Finally, Section 6
presents a discussion on SA and discusses future work. A
GitHub repository accompanies this paper: https://github.
com/Jack-Poole/Statistic-Alignment.git.

Domain adaptation

Before defining DA, it is important to introduce two key
objects in TL, a domain and task:7

· A domain D ¼ fX ,PðX Þg, defined by of a feature
space X and a marginal probability distribution P(X).

· A task for a given domain is defined by
T ¼ fY, f ð�Þg, whereY is the label space and f (�) is a
predictive function learnt from a finite sample
fxi, yigni¼1, where xi 2 X and yi 2Y.

In unsupervised DA, a source domain
Ds ¼ fxs, i, ys, ignsi¼1, with ns source instances xs,i, each with
labels ys,i and a target domain Dt ¼ fxt, jgntj¼1 with nt un-
labelled target instances, xt,j, are used to learn a classifier
that generalises to the target domain. It is assumed that there
are differences in the marginal distributions P(Xs) ≠ P(Xt),
and/or the conditional distributions P(ys|Xs) ≠ P(yt|Xt).
Thus, DA aims to find a mapping that aligns the data
distributions. The focus of this paper is homogeneous DA,
where the feature spaces are assumed the same X s ¼ X t.

This paper is also concerned with partial DA problems,
where the available target data pertains to fewer classes than
the source, that is, the target label space is a subset of the
source Yt � Ys.

7 For example, consider a discrete damage
localisation problem with five locations, the source may
have data for all five locations, whereas the target could only
have data pertaining to one location, where the aim of using
partial DAwould be to use the data in the source domain to
learn what location the damage in the target relates to.

A major consideration when attempting unsupervised
DA is that the lack of labels in the target domain makes
validation challenging. Reducing the risk of negative trans-
fer,41 where DA causes performance degradation, is an on-
going focus of TL research and is of particular importance in
SHM where safety critical and high cost assets are at risk.

Statistic alignment

Domain adaptation methods typically attempt to completely
harmonise the data distributions, often utilising nonpara-
metric distance metrics to find a nonlinear mapping.7

Generally, these metrics rely on the data in both domains
being sufficient to perform accurate density estimation.
However, in SHM problems, data from a given structure are
likely to be limited, particularly for more informative data,

Figure 2. The proposed flow for domain adaptation in PBSHM.
Note: some DA methods may incorporate domain adaptation and a predictive function (i.e. a classifier) in a single model.
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such as damage-states or disparate environmental condi-
tions. A branch of DA, SA, provides an alternative solution
to align the datasets; and, it is defined as,

Definition 1. Statistic alignment methods for DA directly
align the lower-order statistics of the domains via affine
transformations and scaling.

These approaches typically focus on matching the first-
and second-order statistics, and are most appropriate when

· Data can be assumed Gaussian, which is a common
assumption in SHM for the linear response of a
structure.1

· The higher-order statistics are already similar.
· Data are limited as robustly estimating the lower-

order statistics requires significantly less data than
nonparametric density estimation.

In addition to being less data intensive, SA could also
facilitate better visualisation of the domain data. Many
prominent DA methods7,44 project the data into a latent
space via a nonlinear mapping. In comparison, SA main-
tains the structure of the original feature space, as it is
limited to affine transformations; this can be useful for
physically-interpretable features, which are common in
SHM, because features often correspond to some physical
process; for example, an increase in natural frequency can
be interpreted as a stiffening effect.

One of the most popular SA methods is correlation
alignment (CORAL),45 which aligns the source correlation
with the target. The multiple outlook mapping algorithm is a
similar approach that aligns the principal components.46 He
et al. proposed Euclidean alignment (EA), which aligns the
means of the covariance matrices for 2D electroencepha-
logram features, and demonstrated that SA methods can be
generalised to cases with multiple sources.47

A related branch of DA concerns batch normalisation
approaches,48–50 which align the means and standard de-
viations of the activations in DNNs. These methods differ to
SA, as the statistics of the original data are not directly
aligned and the objective of the network (classification etc.)
will influence the feature representation.

Standardisation as SA

Standardisation, a form of normalisation, is commonly used
in conventional machine learning to give each feature equal
treatment.6 In DA, it also has the potential to align the means
μ and standard deviations σ of the marginal distributions
P(Xs) and P(Xt) in an unsupervised manner, with the fol-
lowing transformations

zð jÞs ¼ xð jÞs � μs

σs
(1)

zð jÞt ¼ xð jÞt � μt

σt
(2)

where μs and μt are the means of the source and target; σs
and σt are the respective standard deviations. In this paper,
this form of standardisation will be referred to as A-
standardisation. On the other hand, standard practices for
machine learning would suggest that the statistics applied to
all data should be the same; for example, if some data from
the source and target domain are considered training data the
statistics would be calculated from X = Xs [ Xt, which may
remove the effect of measurement scale without changing
relative mean distance or scale between the domains. This
method will be called N-standardisation in this paper.

Previous work has studied various approaches to nor-
malisation to improve the performance of a popular DA
algorithm, transfer component analysis (TCA),51 showing
standardisation can lead to better adaptation. However, it
suggests a range of approaches, including methods that
would not align the statistics (such as N-standardisation),
and does not consider using standardisation alone to per-
form adaptation. The current paper first considers stand-
ardisation as a form of DA itself, before considering it as a
pre-processing method.

Correlation alignment

A-standardisation aligns the domains, ignoring the corre-
lation between features. Correlation Alignment,45 extends
this method to also align the covaraince. This is achieved by
transforming the source domain via a linear transformation
matrix A, such that

min
A

����bCs � Ct

����2
F
¼ min

A

��ATCsA� Ct

��2
F

(3)

where bCs is the covariance of the transformed source,Cs and
Ct denote the covariance matrices of the source and target,
respectively, and k � kF is the Frobenius norm. In many SHM
cases, CORAL may improve generalisation of the source
classifier, but estimating covariance suffers from the curse
of dimensionality. If the number of observations in Xs or Xt

are smaller than the number of dimensions d (n < (d + 1)),
the covariance matrix will be singular.52 This can be a serious
problem since vibration data are often high-dimensional. In
damage detection, the curse of dimensionality has motivated the
use of ensemble methods to robustly estimate covariance.52,53

Normal-condition alignment

Structural health monitoring datasets are likely to have class
imbalance; thus, current SA methods may not be robust to
SHM problems. For example, given two bridge datasets it is
unlikely that both bridges will have the same quantity of
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available data from every damage-state and environmental
condition. It is also unrealistic to assume the target will
contain data from each health-state in the source – moti-
vating the application of partial DA. As such, their statistics
summarise different behaviours and aligning the domains
based on these moments will not align the underlying
distributions, leading to negative transfer, illustrated in
Figure 3. Similarly, prominent DA methods typically only
minimise the marginal data distributions,7 which may also
result in a subset of classes in the target being aligned to
match the distribution of the entire source. Thus, NCA is
proposed, which aims to reduce the risk of aligning data
generated via different processes, by utilising the as-
sumption that data gathered at the start of a structures
operation were generated by the ‘normal-condition’ – a
common assumption made for novelty detection.2 In NCA,
the source domain is first standardised via equation (1) to
centre the data and give features equal treatment. The
normal-condition of the target domain is then aligned with
that of the source by

zð jÞt ¼
 
xð jÞt � μt, n

σt, n

!
σs, n þ μs, n (4)

where μs,n, μt,n and σs,n, σt,n are the means and standard
deviations of the normal-condition data for the source and
target, respectively. If variation between the datasets is
assumed to be limited to scale vector a, and translation
vector b, the differences can be expressed by

Xs ¼ aXt þ b (5)

Given each dataset can be expressed as X = Xn [ Xd

where Xn, is normal-condition data and Xd is damage-state

data and the a and b are affine transformations, it follows
that the transformations for the entire domain can be learnt
from the subsets Xn. It is noted that using only a subset of the
data reduces the available data to learn the statistics, but the
lower-order statistics should be able to be estimated with a
limited sample size.

The main aim of DA is to adapt the underlying dis-
tributions so that a given health-state c from each domain
follows the same conditional distribution Ps(Y = c|X) =
Pt(Y = c|X). Given that the data distributions for a finite
sample will contain biases because of class imbalance and
differences in the label spaces, this task is challenging.
Previous SA and typical DA approaches would naively
attempt to align the marginal distributions, which would
not correctly align the underlying distributions, shown in
Figure 3. Therefore, to align the underlying distributions, a
subset of the source label space must be chosen, and the
quantity of data in each class should be balanced. Ex-
plicitly aligning the marginal distributions of data which
are believed to have been generated by the normal-
condition is a low-risk way of selecting data corre-
sponding to the same label space. This strategy is in
contrast to other approaches, such as automatic weighting
or sample selection procedures based on domain dis-
criminators, which may unpredictably select data from
different health-states.25

Furthermore, reweighting classes to address class im-
balance is challenging, as labels are not available in the
target. However, if the data are limited to normal-condition
data, it can be assumed that variations are related to mea-
surable environmental and operational conditions (EoVs),
such as atmospheric temperature, traffic loading or wind
speed etc.54 These measurements could allow for further
sample selection such that the normal-conditions of each
domain contain data from more similar EoVs.1

The advantages of aligning the domains based on the
normal-condition are demonstrated in Figure 4.
Figure 4(a) presents the original toy problem, consisting
of a source domain with three Gaussian clusters and a
target with two classes. Hence, the problem is a partial
DA scenario and there are also differences in the class
imbalance between the available classes, with 20 samples
in Class 0 (shown in red) for both domains, but with eight
and four samples in source and target, respectively, for
Class 1 (shown in blue). Figure 4(b) presents N-
standardisation, showing that it provides no adaptation.
In Figure 4(c), A-standardisation has misaligned the
standard deviation and mean of the two classes in the
target to the three in the source. Normal-condition
alignment attempts to address this issue by only con-
sidering data from the normal-condition, which in this
case aligns the correct classes because the red and blue
classes have a similar structure in both domains, shown in
Figure 4(d).

Figure 3. Demonstration of aligning all the available data in the
context of partial DA or with class imbalance. The source and
target, shown in blue and red, respectively, have available data
pertaining to a subset of the underlying distribution, shown by the
inner circle. After alignment, the underlying distributions are
not well aligned because the target data is representative of a
smaller subset of the underlying distribution.
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Normal-correlation alignment

Correlation alignment may also be prone to negative
transfer under class imbalance, as accurately estimating the
global correlation would be challenging. A modification of
CORAL could exploit information in the correlation be-
tween the normal data – NCORAL. The first step of
NCORAL is to apply NCA; NCORAL is then given by

min
A

����bCs, n � Ct, n

����2
F
¼ min

A

��ATCs, nA� Ct, n

��2
F

(6)

where Cs,n and Ct,n are the correlations of the normal-
condition in the source and target, respectively. Normal-
Correlation Alignment extends the assumption that the
domains differ by a scale and translation made by NCA, by
also considering a rotation.

It is noted that NCORAL learns the correlation from a
subset of the entire data, so may have additional issues
relating to the curse of dimensionality; this issue may be
addressed by ensemble methods for high-dimensional
features.2

Case study: Numerical three-storey
population

In SHM, the application of supervised and semi-supervised
models is challenging in practical scenarios because label
information is often sparse and expensive to obtain.1 This

section presents a numerical case study, demonstrating the
ability of SA to transfer label information to facilitate
damage localisation with a limited quantity of data and no
labels in the target domain. A number of SA methods are
applied – A-standardisation, CORAL, NCA and
NCORAL – and these are benchmarked against,
N-standardisation (showing the result of applying tradi-
tional SHM methods to a population) and a range of DA
methods that encompass the general DA approaches used in
prior work – transfer component anaylsis (TCA),8 balanced
distribution adaptation (BDA),11 the geodesic flow kernel
(GFK)19 and the domain adversarial neural network
(DANN).13

Simulation

The population consists of two shear structures modelled
as 3DoF lumped – mass models (calculated following the
approach in Ref. [30]). The masses of each DoF were
assumed to be a rectangular volume, representing a floor,
parameterised by a length lm, width wm, thickness tm and
density ρ, with the density sampled from a Gaussian
distribution to represent manufacturing variation. The
masses were assumed connected by four cantilever beams
in parallel, so stiffness is given by k = 4kb, where stiffness
of each beam was found as the tip stiffness of a cantilever
beam, kb ¼ 3EI

l3b
. The elastic modulus E was also drawn

Figure 4. Demonstration of aligning a toy example, panel a, presenting a partial DA problem, consisting of three Gaussian clusters in the
source and two in the target. Panel b gives the result of N-standardisation, c gives A-standardisation and d gives NCA. The source and
target data are represented by (s) and (×), respectively; Classes 0, 1 and 2 are depicted in red, blue and green, respectively.
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from a Gaussian distribution for each sample to introduce
variability. Damping c was not derived from a physical
model; instead, it was drawn from a Gamma distribution
directly.

Damage at a given storey was modelled as an open crack
on one of the four beams, located at the midpoint of the
beam. It was modelled as a reduction in stiffness as in Ref.
[55]; thus, k = kd + 3kb, where kd is the stiffness of a
damaged cantilever beam.

Having obtained the parameters of the model, the
damped natural frequencies ωd were calculated by solving
the eigenvalue problem; the first three were used as features,
X 2R

n×3.
Material properties and geometry for each structure are

detailed in the Appendix. Data were simulated for the
normal-condition and three damage classes, representing
damage located at each DoF. For the source structure, 200
samples were collected for each class and labels were as-
sumed known fxs, i, ys, ignsi¼1, where ns = 800. In the target
structure, 100 samples were collected for each class
fxt, jgntj¼1, where nt = 400. The target labels were assumed to
be unknown for all classes apart from the normal-condition.
In addition, a separate test target dataset was generated via
the same procedure as the training set, that is,
fxtest, j, ytest, jgntestj¼1, where ntest = 400.

In this paper, the case studies focus on vibration-based
SHM, but other features could be utilised. It is interesting to
note that previous work has applied DA technologies to the
similar field of non-destructive testing with ultrasound
data,56,57 and both studies find normalisation or batch
normalisation that adapts the domains has a key role in
achieving transfer.

Comparison

To demonstrate that SA can robustly transfer label infor-
mation between structures, the labels for the three discrete
damage locations, corresponding to each DoF, and normal-
condition in the source were transferred to the target to
facilitate damage localisation for the same health-states,
without using target labels. Four SA methods were con-
sidered; alignment via A-Standardisation given by equa-
tions (1) and (2), CORAL, NCA and NCORAL. In addition,
to benchmark these methods against traditional SHM (no
DA), N-Standardisation (i.e. calculating the statistics from
X = Xs [ Xt) was applied. After alignment, a k-nearest
neighbours classifier (KNN), with one neighbour, was learnt
on a source training set and used to classify data in a target
test set, although any appropriate classifier can be applied
following SA, a KNN is used here, because if the source and
target distributions are well aligned, data should be close in
Euclidean distance. Furthermore, SA is compared to some
prominent DA approaches, using N-standardisation for pre-
processing; these are as follows:

· Transfer component analysis:8 learns a feature space
that minimises a nonparametric distribution distance
metric, the maximum mean discrepancy (MMD),58

between the marginal distributions P(Xs) and P(Xt),
by MMD-regularised kernel principal component
analysis (PCA).

· Balanced distribution adaptation:11 extends TCA by
also attempting to minimise the MMD between the
conditional distributions P(ys|Xs) and PðbytjXtÞ, wherebyt are label predictions. Since there are no labels in the
target, BDA uses pseudo labels from predictions to

Figure 5. Unnormalised damped natural frequencies of the source structure of the numerical population of three-storey, in Hz. A
random subset 20% the size of the dataset was used for visualisation.
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assign target samples to a given class and finds the
distance between the class-conditional distributions
P(Xs|ys) and PðXtjbytÞ.

· The geodesic flow kernel:19 uses the ‘kernel trick’ to
find a projection of infinite subspaces on the
Grassmann manifold that bridge the source and target
PCA subspaces, which are assumed to lie on a
common manifold.

· The domain adversarial neural network:13 uses a
deep feature extractor to find a domain-invariant
space. Taking inspiration from the generative ad-
versarial network,59 a domain discriminator is trained
to distinguish between the source and target. Gradient
ascent is performed in the feature extractor to align
the distributions; a classifier is simultaneously trained
to ensure the feature space is discriminative.

These methods include the main forms of feature ex-
traction previously used for DA in SHM – linear subspaces,
kernels and DNNs – as well as methods that minimise a
nonparametric statistical distance metric, a domain dis-
crimination loss (adversarial approach) and the distance
along the geodesic.

Hyperparameter selection via cross-validation is chal-
lenging in unsupervised DA, because labels in the target are
assumed unavailable. As such, the MMD-based methods
(TCA and BDA), utilise an RBF kernel with the length scale
chosen as the median of the pairwise distances;58 the di-
mension of the feature space is reduced by one and the
Frobenius-norm regularisation parameter was arbitrarily
chosen as 0.1; results are largely insensitive to this value.8

Balanced distribution adaptation includes a ‘balance factor’
to control the contribution of the MMD between the mar-
ginal and conditional distributions; this was chosen to be 0.5
as suggested in Ref. [11] for the unsupervised setting. The
dimension of the GFK subspace must be 1, since there is a
requirement that it is less than half the original dimension.19

The classifier learnt on the features found by TCA, BDA
and the GFK methods was a KNN, with one neighbour. The
architecture of the DANN was chosen from a similar case,
given in Ref. [60]. The DANN is sensitive to the random
initial weights, so 100 repeats were run and the mean and
one standard deviation are given.

Results are given for a test dataset in the target domain,
where the evaluation metric used is the macro-F1 score (see
Ref. [30] for more details).

Results: Numerical
three-storey population

The unnormalised natural frequencies of the source and
target can be found in Figures 5 and 6, respectively. The
differences between the domains are large, with the

absolute values in the target being about a factor of two
larger than the source. Estimations of the class data
distributions are given by kernel density estimation (see
Ref. [61] for more details), shown on the diagonal of each
figure.

Results comparing each DA method can be found in
Figure 7. As expected, the KNN trained on the N-
standardised (unadapted) features, which can be con-
sidered as naively applying a classifier trained via a
traditional SHM approach to another structure, lead to
poor generalisation of the source classifier. Following
any SA, perfect classification could be achieved. The
features given by A-standardisation can be found in
Figure 8. It can be seen that even though the two
structures have significant differences, the domains
have been well aligned, perhaps suggesting differences
between similar structures caused by size and material
properties may only lead to differences in mean and
scale, assuming a linear response. Furthermore, the
conventional DA algorithms did not improve classifi-
cation performance upon N-standardisation. These
methods should be able to align both the lower- and
higher-order statistics, so this result may suggest that
large differences in scale and mean may make learning
challenging in conventional DA algorithms. This issue
may be related to the quantity of data. It is noted that as
the mean and standard deviation are relatively simple to
calculate from the data directly, SA could be used to
reduce the mean and scale discrepancies before these
algorithms are applied, motivating the idea of SA as a
pre-processing tool.

Results: Partial domain adaption with the
numerical three-storey population

In practical scenarios for PBSHM, it is likely that the
amount of data from each health-state and the labels spaces
would differ between domains; in such cases, conventional
DA is prone to negative transfer.36 Thus, the use of partial
DA methods should be considered. Normal-condition
alignment and NCORAL intrinsically addresses the par-
tial DA problem by only adapting the normal-condition. To
investigate the robustness of previously applied methods to
partial DA and class imbalance, the target domain was
downsampled to only include 10 samples from one damage-
state, corresponding to damage on the third storey – this is a
partial DA problem as the target only has two classes, which
are a subset of the four in the source. Therefore, the transfer
problem in this case is to transfer the label information from
the source structure to the target, given that the target only
contains a small quantity of data from one of the three
discrete damage locations in the source.
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The results for this case are given in Figure 9. As with the
previous case, all the conventional DA methods failed to
improve generalisation.2 In addition, A-standardisation and
CORAL caused negative transfer. Figure 10 shows that
aligning the global statistics using A-standardisation in this
scenario has caused the two available target classes to be
spread across the four classes in the source. Figure 11 shows
that by only aligning the normal-condition statistics, the
damage data were also aligned. This result could be
achieved without any available damage-state data in the

target, allowing damage diagnostics in real time using
contextual information from a source domain.

Case Study: Partial DA with the Z24 and
KW51 bridges

In a population of real structures, it is more realistic to
assume a partial DA setting. This section presents a real
population of structure consisting of the Z24,42 and KW51
bridges.43 This population consists of two partial DA
problems that are challenging to solve using previously
investigated DA approaches. First, the KW51 bridge was
repaired, which changed the response, so to reuse the
previous monitoring data DA must be used to realign the
response with the pre-repair data. Second, the Z24 bridge
dataset contains damage-state data that could be used to
further inform a monitoring system if it can be aligned with
the KW51. As such, this section demonstrates how NCA
and NCORAL can be used to bring these domains into
alignment.

Datasets

The Z24 bridge dataset is well-studied, with data-based ap-
proaches being able to identify key events during the moni-
toring campaign.2,62–69 The Z24 bridge was a concrete
highway bridge in Bern, Switzerland, which, as part of the
SMICES project, was used for an SHM campaign before its
demolition in 1998.42 The first four natural frequencies were
found via operational modal analysis (OMA), from the col-
lected acceleration responses. Small-scale damage was in-
troduced by lowering the pier incrementally on the 10th of

Figure 6. Unnormalised damped natural frequencies of the target structure of the numerical population of three-storey, in Hz. A
random subset 20% the size of the dataset was used for visualisation.

Figure 7. Classification performance of a KNN on the target
domain after DA on the numerical three-storey population. The
result of the DANN is given as the mean of 100 repeats with one
standard deviation shown by a black line. DANN: domain
adversarial neural network; KNN: k-nearest neighbours
classifier.
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August 1998, before more severe damage occurred, starting
with the failure of the concrete hinge on the 31st of Au-
gust 1998. For a more in-depth overview of this dataset, see
Ref. [62].

The KW51 bridge is a steel bow-string railway bridge in
Leuven, Belgium. A monitoring campaign was carried out
between 2018 and 2019 during 15 months. The acceleration
responses were used to obtain the first 14 natural frequencies
via OMA. During the monitoring campaign, each diagonal
member was retrofitted with a steel box to strengthen the

design of the bridge, with the retrofit beginning on the 15th of
May 2019 and completed on the 27th of September 2019.
Novelty detection of the retrofit has been successfully
demonstrated using robust PCA and linear regression
trained on the pre-retrofit data.70 For a full description of
the dataset, the reader is referred to Ref. [43].

Even though the two bridges differ significantly by
design, a subset of the natural frequencies can be chosen
where there are similarities in the modal response of the
bridges. Specifically, the first and third natural frequencies
of the Z24 bridge and the 10th and 12th natural frequencies
of the KW51 bridge correspond to vertical bending modes
of the deck and have to close the same nodal pattern (for
visualisation of the mode shapes see, Refs. [42] and [43] for
Z24 bridge and KW51 bridge, respectively). The corre-
sponding natural frequencies are visualised in Figures 12
and 13; it can be seen that both bridges experience stiffening
effects because of below freezing conditions and the Z24
bridge dataset contains additional information corre-
sponding to damage. Therefore, both bridges can be as-
sumed to have two normal-conditions (normal ambient and
low temperature). In addition, it is clear that the KW51 is
stiffened by repair, shown by the increase the frequencies
for similar temperatures, meaning that the pre- and post-
repair states correspond to two domains.

Within the two datasets, there are three domains. Clearly,
the response between the Z24 and KW51 bridges are dif-
ferent and require some form of DA for knowledge transfer.
In addition, following repair the response of the KW51
bridge changed. This phenomenon has previously been
investigated; it was found for pre-repair data to be used to
predict the health-state for the post-repair structure, it must

Figure 8. A-standardised features of the numerical three-storey population of structures. The source and target are depicted by (s)
and (×), respectively. A random subset 20% the size of the dataset was used for visualisation.

Figure 9. Classification performance of a KNN on the target
domain after DA on the numerical three-storey population in a
partial DA scenario. The result of the DANN is given as the mean
of 100 repeats with one standard deviation shown by a black line.
DANN: domain adversarial neural network; KNN: k-nearest
neighbours classifier.
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be realigned via DA.32 Thus, to perform future predictions
on the KW51 bridge post-repair using the Z24 and KW51
bridge pre-repair data two partial DA problems must be
addressed:

1. Align the pre- and post-repair data so that the KW51
bridge data can be treated as one domain. This

problem is defined as one of partial DA, because
there are data from the ambient and low temperature
normal-conditions in the pre-repair state, but only
the ambient normal-condition in the post-repair
state.

2. Align the KW51 and Z24 bridge data. This problem
is one of partial DA, because there is an additional

Figure 10. A-standardised features of the numerical three-storey population of structures in a partial DA scenario, with data only from
a subset of the source classes in the target. The source and target are depicted by (s) and (×), respectively. A random subset 20% the
size of the dataset was used for visualisation.

Figure 11. NCA features of the numerical three-storey population of structures in a partial DA scenario, with data only from a subset of
the source classes in the target. The source and target are depicted by (s) and (×), respectively. A random subset 20% the size of the
dataset was used for visualisation. NCA: normal-condition alignment.
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class in the Z24 bridge dataset relating to damage on
the deck.

Using previously investigated DA algorithms, this
problem would be challenging to solve. The methods that
find a subspace (TCA, BDA, the GFK etc.) will reduce the
dimension of the original space to unity when adapting the
pre- and post-repair domains, and then they could not be
used to adapt the KW51 to the Z24 bridges, as the di-
mension cannot be further reduced.3 In addition, the DNN-
based methods often require labels for a classification task
in the source. This classification task maintains the dis-
criminative information in the domains. Although, tem-
perature data are available for each bridge, there are no
ground-truth labels that indicate the stiffening effects
caused by low temperatures. Therefore, there are only
noisy labels to maintain discriminative information be-
tween the ambient and low temperature normal conditions.
Even if these labels are used, there are only 110 samples
corresponding to low temperatures in the KW51 bridge
dataset, so if an unbiased subset of data were chosen there
would be 220 samples in the pre-repair source domain,
which is likely too small to train a DNN. As such, this
section demonstrates that NCA and NCORAL can be used

to align the pre- and post-repair states of the KW51 before
NCORAL is used to align all the data of the KW51 to the
Z24 bridge datasets.

Domain adaptation and clustering

Initially, a sensitivity analysis was conducted to evaluate
the quantity of data required in each domain for SA. The
mean and standard deviations were calculated for each
structure with varying sample size, starting at 10 in-
creasing to 500 samples, with a 10 sample step size. The
results of the sensitivity analysis are given in Figure 14. It
can be seen that the mean can be accurately estimated with
very limited data, suggesting transfer could be possible
between real structures if the differences are mostly
summarised by the mean. As expected, the standard de-
viations required more data to be accurately estimated,
particularly for the KW51.

The first step was to adapt the pre- and post-repair KW51
data. Thus, NCORAL was applied, learning the statistics
using the first 200 data from the pre- and post-repair state,
which correspond to similar temperatures. Given the sen-
sitivity analysis (Figure 14(d)), this sample size should
correspond to a robust estimation of the statistics whilst only

Figure 12. The first (bottom) and third (top) natural frequencies of the Z24 bridge dataset. The first instance of damage, commencing
on the 10th of August, is indicated by the black line.

Figure 13. The 10th (bottom) and 12th (top) natural frequencies of the KW51 bridge dataset. The red vertical line indicates the start of
the retrofit and the green is the end.
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selecting data from a short period after inspection to in-
crease the likelihood that it was generated by the normal-
condition.

Once adapted, it was assumed that the pre- and post-
repair data could be treated as a single domain. Thus, to
align the Z24 and KW51 bridge datasets, NCORAL was
applied. As can be seen in Figures 12 and 13, both bridges
experience stiffening effects because of freezing tempera-
tures, so a prior assumption is that, within both datasets,
normal-condition data can be split into two classes, per-
taining to ambient (T > 0°C) and low temperatures (T <
0°C). Labels for these effects are not explicitly known, but
temperature data gives an indication as to which data
correspond to these effects. As such, data where T > 0°C
was considered ‘ambient normal-condition’ and T < 0°C as
‘low temperature normal-condition’. Since there is signif-
icantly more ambient normal-condition data in both do-
mains, the temperature measurements were used for sample
selection. For the Z24 bridge, based on the sensitivity
analysis (Figure 14(c)), 400 samples were selected from
each normal-condition class, with the low temperature
normal-condition being randomly selected from the subset
where T < 0°C. In the KW51 dataset, there are only 110
samples corresponding to T < 0°C; so that the dataset is
unbiased 110 samples are used from each normal-condition.
Based on the sensitivity analysis (Figure 14), this sample
size only underestimates the 10th natural frequency by
approximately by 4% and overestimates the 12th natural
frequency by 7%. The KW51 bridge is adapted by only
considering a subset of data from the first 72 days of its

monitoring campaign, which can safely to be assumed to be
operating in it’s normal-condition.

To demonstrate that after alignment information between
the bridges can be shared, an unsupervised GMM is learnt
on the aligned features. Here an unsupervised model is
utilised, since ground-truth labels are unknown, but any
appropriate model could be applied after SA. The prior
assumption is that there are three classes within datasets, the
ambient and low temperature normal-conditions and, the
Z24 bridge damage, so a three-component model was
implemented. Since, ambient normal data are more abun-
dant, to reflect the prior assumption that normal-condition
data is split between ambient and low temperature condi-
tions, the temperature data were used to downsample data
corresponding to ambient conditions (T > 0°C).4

The aligned features and the predictions made by the
GMM can be found in Figure 15. It can be seen in Figures
15(b) and (c), that the ambient normal-conditions of the Z24
bridge, pre- and post-repair KW51 bridge are well aligned,
as well as, the low temperature normal-condition of the Z24
bridge and pre-repair KW51 bridge. The feature space has
maintained physical interpretability (Figure 15(a)), an as-
pect of SA that could be useful for mitigating the risk of
negative transfer. The stiffening effect caused by low
temperatures engenders an increase in each feature (in blue,
where T < 0°C). In addition, the stiffening reduction caused
by damage in the Z24 bridge can be seen by a reduction in
each feature (in purple).

One of the main advantages of aligning the population of
bridges is that damage-state data from a source could be

Figure 14. Sensitivity analysis for calculating the means and standard deviations for the Z24 and KW51 bridges for a varying sample size.
Panels a and b present the means for the Z24 and KW51 bridges; panels c and d give the standard deviation.
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used to further inform a damage detector for the target. In
Figure 15, it can be seen that the normal-condition data for
the KW51 lies on the boundary with damage in the Z24
bridge dataset, but no data are misclassified as showing
damage.5 This result motivates the idea of using damage
to inform a novelty detector to reduce the number of false
positives that occur when the threshold is defined based
on the normal-condition of the target alone. Unfortu-
nately, there is no damage in the KW51 to confirm this
finding.

This case study also illustrates a trade-off between
selecting features that are transferable and damage sen-
sitive, shown by Figure 15(b) where some normal-

condition data of the Z24 bridge dataset are clustered
with damage. It can be seen in Figure 15(a) that this is
largely because damage is masked by ambient Z24 bridge
data. In previous studies, however, it has been demon-
strated that using all four available frequencies allows for
damage to be discriminated,2 but the most damage sen-
sitive natural frequency in the Z24 bridge dataset (the
second natural frequency) was not used since the mode
shapes indicate there is low physical similarity with any of
the modes in the KW51 bridge. This trade-off may be
influenced by the similarity of the population. In this
population, a concrete box-girder highway bridge is used
to transfer information to a steel bow-string railway bridge,

Figure 15. Unsupervised GMM predictions on the Z24 and KW51 bridge datasets. Panel a gives the comparison of the two features
after alignment using NCORAL, showing the four Gaussian components identified (μ (+) and 2

P
(—)); the Z24 bridge samples are

denoted by (s) and the KW51 by (×). Panels b and c gives the predicted classes on the unadapted Z24 bridge (ω1 and ω3) and KW51
bridge (ω10 and ω12) natural frequencies against sample point.

14 Structural Health Monitoring 0(0)



with the two structures having differences in material
properties, geometries and connectivity. Thus, since the
aim of DA here is to find a feature space where future
health-state data could be shared, the features should share
physical similarity, such that it is believed that the same
physical phenomena in each structure would correspond to
similar parts of the feature space. This objective justifies
the approach of selecting only frequencies with strong
modal correspondence, but the dissimilarity between the
bridges means that only two frequencies were deemed to
be sufficiently similar. In a population where structures are
more similar, it is reasonable to expect that a larger pro-
portion of modes would be similar, reducing the severity of
this trade-off; for example, two nominally identical wind

turbines would be expected to have a larger proportion of
similar modes.

Despite the masking effects, the aim of this case was to
demonstrate that NCA and NCORAL can align the feature
spaces of two structures in a partial DA scenario, as well as
address changes to the structural response caused by repair
by only using limited normal-condition data gathered in a
short period after inspection. This objective has been
achieved using a small quantity of inexpensive data, that is,
normal-condition response and temperature data. The trade-
off between transferable and damage sensitive features is a
topic for further research.

Case study: SA as pre-processing

The previous case studies have demonstrated that exclu-
sively aligning the lower-order statistics via SA can facil-
itate knowledge transfer. In fact, if the underlying data
distributions are similar enough, SA can completely align
the domains, as in the three-storey case study.

It is noted in contexts where the datasets are similar and
SA is sufficient for adaptation, applying further adaptation
may add an additional risk of negative transfer and lose the
physical interpretability of the feature space. The question
of whether similarity can be measured before transfer has
been considered, with Refs. [4] and [30] proposing tech-
niques for measuring physical and data similarity between
members of a population.

In scenarios where members of the population are less
similar, there may be disparity between both the lower- and
the higher-order statistics. Thus, it is proposed that SA

Figure 16. Normal-condition alignment features of the numerical three- to seven-storey population of structures. The source and
target are depicted by (s) and (×), respectively. A random subset 20% the size of the datasets is plotted for visualisation.

Figure 17. Classification performance of a KNN on the target
domain after various SA methods, then DA on the numerical
three- to seven-storey population. The result of the DANN is
given as the mean of 100 repeats with one standard deviation
shown by a black line. DANN: domain adversarial neural
network; KNN: k-nearest neighbours classifier.
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should be used as pre-processing, aligning the lower-order
statistics, such that the nonlinear mapping found by further
DA is simplified.

Compared to SA, specifically NCA and NCORAL,
prominent DA algorithms may have a number of additional
requirements. Data available in each domain should be
representative of their respective underlying distributions
and abundant enough for nonparametric density estimation.
Furthermore, prominent DA methods are prone to negative
transfer in partial DA36 and if the target only represents of
small subset of the source classes, the risk of negative
transfer will be higher.71 Therefore, further DA should be
used when there is reason to assume that there are significant
differences in the higher-order statistics and also, when
available information is sufficient in each domain to miti-
gate the associated risk of negative transfer.

To demonstrate SA as a pre-processing method, another
numerical case study is presented. The simulation procedure
follows the previous numerical case study, with this case
forming a heterogeneous population consisting of 3DoF
source and 7DoF target structure, giving a more complex
transfer problem (the material properties can be found in the
Appendix). Damage was simulated for the first and third
storeys in each structure. This case does not investigate
partial DA, as prominent DA methods are prone to negative
transfer in this scenario so identification of robust partial DA
methods to use in conjunction with SA is left for future
research. For the source, 400 samples were simulated for the
normal-condition and 150 samples for each of the damage-
states, ns = 700. In the target, 200 samples were simulated
for the normal-condition and 75 samples for each of the
damage-states, nt = 350. Class imbalance between the
normal-condition and damage-states is introduced in this
way to emulate practical scenarios, where normal-condition
data will be more abundant. The TL problem is, therefore, to
transfer the label information from the normal-condition,
first damage location and third damage location in the
source structure to the same location in the target structure.

N-standardisation, A-standardisation, CORAL and NCA
were each used as a normalisation procedure. Following this
step, each of the previously used DA methods were applied,
including a KNN on the N-standardised space, with one
neighbour, to provide a benchmark for performance gains
given by further DA.

Results: Numerical three- to seven-storey population

The NCA features are visualised in Figure 16. Significant
differences in the domains can be seen, including the order
of Classes 1 and 2 being flipped between domains in the
second mode. Classification results can be found in
Figure 17. Without first performing SA, none of the non-
linear DA methods achieved adequate adaptation for
knowledge transfer. Each of the SA methods alone

improved upon the unaligned KNN. Following NCA and
NCORAL, excluding the GFK, all DAmethods were able to
improve upon SA alone. In this case, NCORAL gives the
same result as NCA, since correlation of the normal-
conditions is the same in both domains. The GFK did re-
sult in negative transfer after NCA and CORAL, but this
method aligns PCA subspaces with dimension k, with the
condition it must be under half the dimension of the original
space d, that is, k < d/2. Thus, in this case, k = 1, which may
have not been sufficient to encode enough discriminative
information. A-standardisation and CORAL did perform as
well as NCA or NCORAL with any method, with the
exception of the GFK after CORAL, suggesting that class
imbalance effected their performance. These results suggest
that even though without SA, the nonlinear DAmethods fail
to achieve knowledge transfer, they can still provide ad-
ditional performance gain if SA is applied first, highlighting
that it is crucial to consider SA for transfer in SHM.

Conclusions

Population–based SHM aims to facilitate more in-depth
health-state diagnosis in SHM by sharing information
across a population of structures. When utilising informa-
tion across different structures, whether that be a homo-
geneous or heterogeneous population, there will be
differences between the training and testing distributions.
Transfer learning, in the form of DA, offers a solution to this
issue by finding a mapping that aligns the feature spaces.
However, previously implemented DA methods have relied
on methods that are data intensive, susceptible to negative
transfer under class imbalance and in partial DA, and map
data into a latent space that may make it challenging to
interpret physical phenomena. SA is proposed as a solution
to these challenges, with two methods proposed to address
issues regarding class imbalance and partial DA. It is also
proposed that SA can simplify the problem for nonlinear
methods when used as a pre-processing method.

Three case studies were presented to evaluate the ap-
plicability of SA. The first, a heterogeneous numerical
population, found that the differences between linear
structural responses caused by material properties and the
size of the structure could be removed by aligning the mean
and standard deviations. Furthermore, the main approaches
to DA that have been previously studied failed to adapt the
domains. The dataset was then downsampled to investigate
class imbalance, in a partial DA scenario, suggesting that
previous SA approaches may cause negative transfer under
class imbalance, whereas NCA and NCORAL are more
robust.

The second case study presented a real heterogeneous
population of two bridges – the Z24 and KW51 bridges.
Normal-Correlation Alignment was applied, solving two
partial DA problems relating to the pre- and post-repair
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states in the KW51 bridge dataset, as well as adapting the
KW51 and Z24 bridge datasets. Adaptation was achieved
by using limited data directly after inspection in the KW51
bridge, which was shown to be adequate to identify be-
haviour of interest using an unsupervised GMM. In addi-
tion, the idea of sample selection using measurable EoVs to
reduce class imbalance was demonstrated by selecting data
corresponding to above and below freezing temperatures.
Intuitively, this population may be considered as a highly
challenging transfer scenario, as it consists of a concrete
highway bridge and a steel railway bridge. Thus, the fact
that NCORAL could align the domains with such a small
dataset demonstrates the potential of aligning normal-
condition data. A potential application of this alignment
would be to define a more informed threshold for damage
detection, using the damage in the Z24 bridge dataset. Such
a threshold would result in no false positive in the KW51
bridge dataset despite KW51 bridge normal-condition data
being extremely close to boundary for the identified damage
cluster in the feature space after alignment.

In dissimilar populations, only considering the lower-
order statistics may limit the potential performance gains
that a nonlinear mapping could provide, so a final case study
discusses using SA as a pre-processing method to simplify
the DA problem. Even though the nonlinear DA methods
utilised should have the ability to align the lower- and
higher-order statistics, without first using SA, all of these
methods failed to transfer knowledge. This result suggests
that SA is a potentially crucial pre-processing method for
DA in SHM. Normal-condition alignment and NCORAL
were shown to be particularly robust to class imbalance.

Future work is required for the reliable application of the
technologies discussed in this paper. One limitation of the
DA identified here, is the trade-off between discriminative
and transferable features, motivating the investigation of the
required level of similarity between features for robust
transfer. In addition, this paper suggests that for similar
features, SA can achieve sufficient adaptation to provide
more accurate; in-depth diagnostics and in situations where
further DA is beneficial, SA is a crucial pre-processing step.
Since there is a risk of negative transfer associated with
applying DA,41 DA should not be naively applied, so future
work is required to identify when it is beneficial and how to
reduce the risk of negative transfer in an unsupervised
manner. A large part of this work will be concerned with
identifying a suitable unsupervised metric to measure
similarity between features; for example, physical similarity
may be used.4 Also, methods used in conjunction with SA
for aligning higher-order statistics should also be robust to
partial DA problems, so the development of partial DA
algorithms that do not require large datasets will also be
considered. Finally, partial DA has been demonstrated as a
useful tool to alleviate the strict assumption that the label
spaces are identical, as made by conventional DA.

Nevertheless, in some scenarios, the target domain will also
contain data pertaining to a health-state that is not in the
source, motivating the study of methods that further weaken
this assumption; for example, open-DA.7
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Notes

1. It should be noted that these measurements will give an in-
dication of what data are affected by certain EoVs, but they will
not guarantee the data was generated by a given process.

2. The macro-F1 score for N-standardisation is higher than the
previous case because there are only two classes in the target
domain, so classifying all classes as one class results in a macro-
F1 score of 0.5.

3. Even if there were more features available, the feature reduction
performed in step one may make the problem a heterogeneous
DA problem, where the feature spaces differ in dimension.
Heterogeneous DA is considered more challenging and requires
specialised technologies.44

4. This assumption could also be enforced with Bayesian priors.
5. Note, the Z24 bridge damage labels were not used to learn this

GMM, as the main aim is to show the domains are well aligned
by SA. A supervised or semi-supervised model could be used to
better define this boundary.
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Appendix

Material properties

Table A1. Properties for the numerical 3-storey case study.

Unit Source Target

Beam geometry {lb, wb, tb} mm {300, 40, 8} {160, 25, 6}
Mass geometry {lm, wm, tm} mm {400, 400, 40} {300, 250, 25}
Crack geometry {lcr, lloc} mm {20.0, 150} {12.5, 80}
Elastic modulus E GPa Nð210; 1 × 10�9Þ N ð71; 1 × 10�10Þ
Density ρ kg/m3 Nð7800; 50Þ N ð2700; 10Þ
Damping coefficient c Ns/m Gð8; 0:8Þ Gð50; 0:8Þ

Table A2. Properties for the three- to seven-storey numerical case study.

Unit Source Target

Beam geometry {lb, wb, tb} mm {300, 40, 8} {300, 40, 8}
Mass geometry {lm, wm, tm} mm {400, 400, 40} {400, 400, 40}
Crack geometry {lcr, lloc} mm {20.0, 150} {20.0, 150}
Elastic modulus E GPa Nð210; 1 × 10�9Þ N ð210; 1 × 10�9Þ
Density ρ kg/m3 Nð7800; 50Þ N ð7800; 50Þ
Damping coefficient c Ns/m Gð8; 0:8Þ Gð8; 0:8Þ
Storeys 3 7
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