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A powerful new idea in the computational representation of structures is that of the digi-
tal twin. The concept of the digital twin emerged and developed over the last decade, and
has been identified by many industries as a highly desired technology. The current situa-
tion is that individual companies often have their own definitions of a digital twin, and no
clear consensus has emerged. In particular, there is no current mathematical formulation
of a digital twin. A companion paper to the current one will attempt to present the essen-
tial components of the desired formulation. One of those components is identified as a
rigorous representation theory of models; most importantly, governing how they are veri-
fied and validated, and how validation information can be transferred between models.
Unlike its companion, which does not attempt detailed specification of any twin compo-
nents, this paper will attempt to outline a rigorous representation theory of models, based
on the introduction of two new concepts: mirrors and virtualizations. The paper is not
intended as a passive wish list; it is intended as a rallying call. The new theory will
require the active participation of researchers across a number of domains including:
pure and applied mathematics, physics, computer science, and engineering. The paper
outlines the main objects of the theory and gives examples of the sort of theorems and
hypotheses that might be proved in the new framework. [DOI: 10.1115/1.4046740]
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1 Introduction

The digital twin has emerged in the last two decades as a highly
sought-after generalization of the computation models routinely
used by industry and academia in attempts to understand the
behavior of real structures, systems, and processes and to make
predictions in previously unseen circumstances [1-3]. There is
currently no real consensus on what the necessary and sufficient
ingredients of a digital twin are, although a sister paper to this one
[4] will attempt to bring some order to the subject. What is inargu-
able is that because the digital twin extends the concept of a
computational model, such a model must be a core ingredient.
Furthermore the model must be validated; it must be demon-
strated to be in correspondence with reality, at least in the context
of immediate engineering importance. Because of the problems
which a digital twin will be required to address, it will also poten-
tially need to extrapolate or generalize to predictions on different
structures or the same structure in different contexts. This paper
will argue that, in order to ensure the correct operation of digital
twins, a mathematical framework is needed in order to quantify
the likely fidelity of validated models when used to generalize or
extrapolate. This paper will propose that what is needed is a type
of algebra of models, which can be used in order to extend current
concepts of verification and validation (V&V).

For the purposes of this paper, the fundamental problem of
V&V will be regarded as the need to answer two questions:
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(1) What is the lowest-cost model that will allow predictions of
the required accuracy for the structure of interest in the
context of interest?

(2) What is the lowest-cost program of experimental testing
that will validate the model with prescribed confidence?

Note that in answering these questions, one does not need a model
that represents the whole structure across its entire range of possible
behaviors; one only needs a model that matches in the context of
interest." In a machine learning context, the question is essentially
of generalization; having learned from model data, can one say
something meaningful about the structure twinned with the model?
In order to establish an overarching mathematical framework,
one needs to be precise and meaningful in one’s terminology. The
use of the term “twin” is inconsistent with this goal for two rea-
sons; the first is that there is already widespread and disparate use
of the term in the engineering community; the second is that it
does not really make sense as an analogy anyway (most twins are
not identical). The view taken in this paper will be that a more
meaningful term is provided by the word mirror (this terminology
within a digital modeling context was similarly proposed by Tao
et al. in Ref. [5]). A mirror is an instrument that faithfully reflects

'Some would argue that a true “digital twin™ has to match the structure of interest
in all contexts. This viewpoint does not make complete sense, as the physics of a
given structure is unlikely to be known at all scales and in all contexts; this means
that modeling would not be possible. Furthermore, a lot of the motivation for digital
twins comes from industry, and it is not conceivable that a profit-driven enterprise
would require a model to function outside the immediate context of interest if that
extended functionality came at an increased cost.
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reality in terms of the aspects of an object that are mirror-facing;
it provides no “information” about aspects that are not mirror-
facing. The idea of “mirror-facing” will be formalized in the fol-
lowing as a context. Finally, if the object moves, the movement
will be reflected perfectly, in the mirror—at least as far as those
aspects that are mirror-facing. This paper then will attempt to
motivate a mathematical basis for understanding mirrors.
As such, it will have the opportunity to develop independently
of current conceptions as to what a ‘digital twin’ is, but
leaving the possibility for engineers to adopt the technology in
developing whatever their favored definition of a digital twin
actually is.

Everything here is motivated by the desire to construct mean-
ingful validated models of structures and systems; if one were to
do nothing more than rearrange the terminology and dress the
problem in pretty mathematical trappings, then that would be ulti-
mately empty. This paper is motivated by the belief that a general
mathematical theory of models and their validation will be of
value; however, this paper will not be able to go beyond develop-
ment of the basic terminology and theory and some attempts to
convince the reader of the ultimate possibilities. One might argue
that general frameworks have already been proposed in terms of
the formulation and evaluation of models, and that there is no
need to propose another one until the existing ones have been
fairly evaluated. This is a fair point; however, the authors here
would argue that the current proposal is more sympathetic to the
needs of the digital twin concept, because of the explicit attention
given to context and environment. There is no intention here to
play down any previous works on general methodologies; the
assumption is that the tools already proposed will play important
roles. One example of a general framework for V&V is provided
in Ref. [6]. That publication provides a methodology for estimat-
ing the uncertainty in system-level predictions, where system-
level parameters are estimated in terms of lower-level experi-
ments. The paper is largely concerned with calibration and uncer-
tainty propagation, and introduces tools for estimating the
reliability of models. Perhaps more importantly for the current
discussion, the paper introduces a concept of “relevance” which
quantifies the relationship between the system-level model and
lower-level models, and potentially allows a “confidence” mea-
sure in terms of extrapolating from lower levels to the system
level. The paper by Nagel and Sudret [7] proposes a Bayesian uni-
fied framework which provides a “... toolkit for statistical model
building. It forms some kind of superstructure that embeds a vari-
ety of stochastic inverse problems as special cases.” (There are of
course, many other papers one could cite; however, there is no
intention here to provide a survey.) Another fair criticism of this
paper is that the new term “mirror” is not needed either, it refers
simply to a validated model; however, it is introduced here
because it refers to a specific class of models and because, as dis-
cussed previously, there is a need to distinguish the idea from the
more overarching digital twin. The relationships and distinctions
between “mirrors” and “twins” will be highlighted throughout the
paper.

The layout of the paper is as follows: Section 2 will make the
main series of definitions of the important concepts in the frame-
work: contexts, mirrors, etc. The section will also define the con-
cepts of environments and virtualizations which are central to the
idea of a digital twin. Section 3 will discuss a number of example
problems in which the idea of a mirror would be fruitful, assuming
that the appropriate mathematical underpinnings of the theory can
be provided. Section 4 ends the paper with some discussion and
conclusions.

>The term digital mirror is already in use to define an item of technology; the
items being exactly what one might imagine them to be. One could use the term with
complete confidence that the two meanings are unlikely to be confused; however, for
simplicity the objects of interest will just be referred to as “mirrors,” although
different kinds of mirrors will be introduced.
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2 Mirrors

2.1 Basic Definitions. To start with the simplest situation, the
discussion will initially consider only physics-based models; data-
based and hybrid models® will be brought in later.

One must begin with a structure (or system) S; this is the physi-
cal object of interest. It will be interpreted as having an objective
reality independent of its surroundings, i.e., it is possible to think
of it in a vacuum remote from any other matter. Temporal changes
in the confirmation and behavior of the structure will be summar-
ized in a state vector s(t) = {s1(t), ...sns(¢)}, which consists of a
set of Ny instantaneous measurements (at time #) which com-
pletely characterize its state.

Now, the environment of the structure could be considered as
all physical reality exterior to it; however, that is too general. Con-
sidering the fact that the environment could also be characterized
by a state vector, the environment E of S will be defined as the set
of environmental variables that can actually affect S, i.e., a change
in variable will evoke a change in the state s(r). With this in
mind, one will have an environmental state vector e(r) =
{e1(1), ...en. (1)}

Recognizing that one will generally only wish to model some
aspects of the behavior of S, a context C for S will be defined as a
set of environmental state variables C = {¢¢ € E, st € s;i,j}.
The subset {e¢} will be referred to as the environmental context,
and the subset {s} as the response or predictive context.

Now, a schedule W¢ for the context C will be a set of time
series {e(;);i=1,...N;t; € [0,T]}. (In principle, the set {t;}
could be continuous or discrete.) The response r{(¢) to a schedule
W is defined as the measurement sequence resulting from testing
the structure and imposing the schedule as inputs. As the process
will generally be dynamic, it will be denoted by the functional,

15, (1) = S[e§y (1) = W] (1)

where the notation S is used again to indicate that the functional is
identified with the physical structure of interest.

One can now define the fest TS, associated with the schedule
We in the context C, as the set T = {¢5,, 75 }. In general, tests
will be carried out for multiple purposes; for the moment, it will be
observed that data are captured for training of models and for test-
ing of models. For this reason, it is useful to divide data accord-
ingly. Supposing that tests have been carried out multiple times,
one can define the training schedule (respectively testing schedule)
as the set of schedules associated with acquiring data for training
(respectively testing); the set being denoted by D, (respectively
D,). (Of course, these sets are specific to a context and a schedule,
but the notation will become too unwieldy if this is made explicit.)

Now, a model of S for a context C will be defined as a mathe-
matical function M which attempts to predict the behavior of S
for any schedule specific to the context C. Depending on the envi-
ronmental and predictive variables, this may be a multiscale and/
or multiphysics model, and it will almost always be implemented
in computer code in some appropriate language.* A simulation for
a context C under a schedule W is then defined as,

miy (1) = MC[ef, (1) = W] @)

Now, it is clear that one can obtain the simulation m{ (f) corre-

sponding to a test T¢ = {¢¢,r¢} (with i now a schedule label), so

*Hybrid models are also referred to in the literature as gray-box or data-
augmented models. In the statistics literature, the addition of a data-based model in
order to correct a physics-based model is commonly called model bias correction or
model discrepancy correction; the most influential framework is probably that
proposed in Ref. [8].

“In fact, it may be the case that different models are needed in order to
completely cover the context of interest. For notational simplicity, it is assumed here
that M€ represents the set of relevant models, returning the values required by the
overall context C; there is no overall loss of generality at this point.
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that one can attempt to assess the fidelity of the model by compar-
ing its predictions to reality.

A metric on a given context C will be defined here simply as
a function d€(x,y) such that d(x,y) > 0, with the zero only if
x = y. (This is only one of the conditions for a true mathematical
metric, but it will do here for now).

Finally, the main definitions of the paper are possible

DEerINITION 2.1. (e-Mirror) A model Mf for a given context C is
an e-mirror if and only if,

d° (mE (1), (1)) < o 3)
for all scheduled tests in D,.

DerFINITION 2.2 (Fitness-for-purpose) A model MS is fit-for-
purpose in a given context C iff it is an e-mirror for C and ¢ < ¢r
where e is a critical threshold based on engineering judgment
and/or context requiremems.5

2.2 Hybrid Models and Uncertainty. So far, only pure
physics-based models have been considered; models sometimes
termed white-box models. At the other end of the modeling spec-
trum are black-box models which are formed by taking a model
basis with a universal approximation property, and tuning the
parameters of the model to a set of observed data; examples of
such models are artificial neural networks or support vector
machines [9,10]. One can also make use of hybrid or gray-box
models, which combine some element specified by physics with
an element of learning from data.

Suppose that it is desirable or necessary to form or update a
model based on data. The model will be established using data
acquired from a training schedule D,, and tested on data from a test
schedule D,.° The resulting model M"€(D,,) is then an e-mirror if it
satisfies the conditions of Definition 2.1 on D,. The model M"“(D,,)
is adapted to the measured data D,,, and is thus now a hybrid model
as indicated by the symbol /; the context does not change.

There is no distinction here on how M"¢(D,,) is obtained. One
might start with a white-box model and learn the parameters via
system identification, or one might adopt a gray-box structure
where a physics-based model is augmented with a nonparametric
machine learner [11]

As the use of machine learning has been raised, it would seem
to be an appropriate point to discuss uncertainty; this is because
many modern machine learning algorithms are probabilistic and
accommodate uncertainty directly. For example, Bayesian
approaches to parameter estimation can characterize the entire
density functions of parameters, rather than simply producing
point estimates [12,13]. Furthermore, nonparametric learners like
Gaussian process regression can produce a natural confidence
interval on predictions [14].

So, under the circumstances, one might allow the possibility
that the model M"(D,,) is a function that returns a random vari-
able, i.e., the simulation responses are stochastic processes,

ME = M"[e§,()](Dy) 4)

The simulation might provide the whole density function for M€,
or just low-order moments. In the first case, suppose that the
model returns the predictive mean of the process 7 (t) = E[MC]
(where E is an expectation), then 7€ () can be used to determine
whether M"“(D,,) is an e-mirror in the mean.

Alternatively, suppose that the model returns enough informa-
tion to determine confidence intervals on the prediction. In this

SThe standard mathematical notation is adopted here, where “iff” is taken to
mean “if and only if.”

SFollowing the best practice in machine learning, different datasets are potentially
required in order to fit parameters and establish hyperparameters [9]. In order to keep
the notation simpler here and avoid confusion about the term “validation,” it is
assumed that the modeler simply partitions D,, appropriately.

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,

Part B: Mechanical Engineering

case, then if r¢(¢) € [m€(f) — ao€(¢), mC (t) + 0o (f)] with proba-
bility determined by o, and for all schedules in D,, then one can
define M"(D,,) as an o-mirror. Note that a given stochastic
model can be both an ¢-mirror and an a-mirror.

It would be possible to define various metrics for comparison in
the uncertain case; the one based on low-order moments described
previously is related to the reliability metric discussed in Ref. [6],
or using the Mahalanobis distance as in Ref. [15], which is in turn
related to a formulation of validation as an outlier analysis prob-
lem, as discussed in Ref. [16]. If the comparison were made on
the whole predictive or parameter density functions, i.e., the sce-
nario in which the predictive distribution is compared to observa-
tional distribution (often via a finite sample set), one might
define a statistical distance (or divergence) measure [15,17], for
example, a Hellinger distance, leading to the definition of an
o-mirror as a Hellinger-mirror, etc.

2.3 The Environment and Virtualization. Raising the ques-
tion of uncertainty means that one must reconsider the status of
the environment.

Recall that the environment is comprised of all those variables
which can have a causal influence on S, the structure of interest.
In general, this set will be composed of variables that can be con-
trolled (e.g., forces applied to the structure) and variables that can-
not (or cannot be controlled with any precision). In an operational
modal analysis context, for example, even the forces may not be
controllable. It is therefore necessary to separate the variables (in
context) accordingly into gf and gf (uncontrolled and controlled,
respectively). This distinction is very important if one wishes to
use the model to make true predictions, i.e., to determine what the
structure might do at some point in the future, under a given (con-
trolled) forcing, but when the gf are unknown.

In this situation, what is needed is a generative model MEC, that
will make some best estimate of ¢€(7),

&,C =M (1) )
This model itself will need to be validated appropriately, as far as
possible. Given training data for the MEC, it might be possible to
establish a nonparametric black-box model that is an &- or o-
mirror, or one could substitute mean values for the variables and
treat variations as uncertainty that needs to be propagated. In any
case, one can now make predictions (in the given context),

pe(r) = Me€ (1),2,C = MLC(1)] (6)

It is now possible to make another important definition: a virtuali-
zation for a given context C is a pair,

Ve = (M)C, MLF) )
where the two models concerned are e-mirrors with the fidelities
specified. The importance of the virtualization is that it can be
used to examine what-if scenarios for the structure of interest in
previously unseen circumstances. Of course, one can make a simi-
lar definition with o-mirrors. Finally, it is important to note that
a virtualization is itself a model, and as such can also be an ¢- or
o-mirror; this will prove to be of interest later, when the use of
virtualizations for design is discussed.

The problem of the “environment” is discussed in Ref. [7];
however, there it appears to have been condensed into the
estimation/calibration of a further parameter set.

2.4 The Turing Mirror. One can also think of a semiphilo-
sophical means of defining a mirror; this parallels the Turing test
in the field of artificial intelligence, which is a test of the ability
of a machine to perform in a manner indistinguishable from a
human [18].
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The test will involve two protagonists: an interrogator and an
oracle. The two people can only interact in a very limited way,
the interrogator is allowed to present questions to the oracle about
the structure of interest via a remote interface. The oracle is
equipped with a model of the structure of interest, which is the
candidate mirror, and also has facilities for carrying out physical
testing on the structure. The interrogator is allowed to present the
oracle with a set of schedules gﬁ, from some given context, and
the oracle is required to return either the test responses of the
structure gﬁ,, or simulations from the model mﬁ,.7 If the interroga-
tor is unable to decide which option the oracle has taken in any
case, then the model in question is a Turing-mirror or T-mirror.

While this may seem like nothing more than an amusing digres-
sion, there is the possibility that the work over the years in terms
of implementing the Turing test could be used in order to derive
rigorous methods of testing mirrors.”

2.5 Transfer Learning and Mirrors. The problem of gener-
ating mirrors lends itself to being formulated in terms of transfer
learning problems. Although there are various techniques that
could provide solutions to the mathematical framework proposed
here, transfer learning provides a potential approach for address-
ing these challenges. Throughout the example sections in this
paper, each problem will also be formulated using transfer learn-
ing. For this reason, general definitions about transfer learning are
provided [20-22].

First, one must define two key quantities: a domain and a task.

DEeFINITION 2.3. A domain D, consists of a feature space X and
a marginal probability distribution D = {X,p(X)} where
X = {g,-}i-v:l € X, i.e., a finite sample set from X.

DEFINITION 2.4. A task T, for a given domain, defines an output
space’ Y and predictive function f (+) learnt from a training data-
set {x;, i}l wherey € Y,ie., T ={V,f(")}.

With these definitions, transfer learning can be defined as:

DErINITION 2.5. ... the process of utilizing knowledge about a
source domain Dy and task T g to improve the learning of a target
predictive function f,(-) for a given target domain D, and corre-
sponding task T, where Dy # D;and T ; # T ,.

Transfer learning methodologies then attempt to solve problems
where different information is available or not, i.e., X, p(X), ) or
p(y|X) are consistent across the source and target [21].

To illustrate transfer learning concepts, a descriptive example is
provided (although further illustrations are presented throughout
the paper). Typically within model validation, a computer model
M may be established as an ¢-mirror for some context Cy, given
some measured response rC'(¢) from the physical structure S.
Often an engineer wishes to repurpose the model for some new
context C,, which differs from the original context C. In this sce-
nario, the model simulation m ! (¢) and structural response <! (¢)
for context C; form a source domain and task, as the predictive
function from the model simulation m¢'(f) to the structural
response 7! (¢) has been established in calculating that it is an e-
mirror. The target domain and task are the model simulation
m©(f) and structural response 72 (¢) for context C,, where typi-
cally 72(¢) is not known (at least before experimental testing has
been performed). Transfer learning in this scenario seeks to lever-
age the knowledge from context C; to estimate the expected

"Clearly, there are subtleties. For example, if the necessary test program in a
given case were to take 10 days, while running the model would only take 10 hours,
the oracle would only return the results after the greater time.

8A very close variant of this Turing test is proposed in Ref. [19]; however, the
“Grieves test” as it is called there, fails to make precise the details of how computer
models are incorporated.

°An output space ) traditionally refers to a label space within the machine
learning transfer learning literature [20-22]. In this context, transfer learning is used
to aid classification tasks where the output space is the set of possible labels from the
feature data. In this paper, an output space will typically refer to output quantities
from a model, e.g., the output space for a dynamical system could be a space of
frequency response functions.
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response 72 (¢) in context C», therefore establishing a bound on &
for C2.

3 Examples

3.1 Examples Concerning Context Change. One of the sim-
pler problems one can imagine in the context of mirrors is how to
analyze the performance of a given model, when asked to make
predictions outside its original context C. This problem is interest-
ing because it can be made to include the case of extrapolation,
although that will not be discussed in great detail here. Extrapola-
tion for a data-based or hybrid model occurs, when the model
M"C(D,,) is used to make predictions outside the range of data
encompassed by the training set D,,. Even if the model M"“(D,,)
is an ¢-mirror on schedules in the training set, this may not hold if
the model extrapolates. Likewise, for a white-box model the
inferred parameters in context C may not be optimal for a new
context C'. One simple way to make the problem of context
change encompass the problem of extrapolation would be to
extend the definition of context C, so that it not only specifies the
variables under investigation, but also the ranges of those varia-
bles encountered in training data.

This example will consider a different problem, where a model
M€ is required to make predictions on different variables to its
context C. Suppose the model is modified in order to predict in a
context C', with the new model denoted M’C’. Furthermore,
assume that there are no training or test data available for the con-
text C'. The interesting question is:

Given that a model M€ is an ¢-mirror for the context C; follow-
ing modification to M’ ¢’ is the new model an &-mirror for C’ for
any ¢, and if so, what is the minimum value of ¢ for which this
holds? (Note that, with the extended definition of context dis-
cussed above, this is the extrapolation problem if M = M’).

Consider a simple example. Suppose one has constructed a
finite element (FE) model M€, of a cantilever beam (as in Fig. 1).
The model has been validated on test data measured as the
acceleration responses j,(¢) at points i = 1, 4, so that the predictive
context is {J,¥,}. Suppose that M€ has been established as an -
mirror on the context C. Now, further suppose that one wishes to
make predictions of the response at points 2, 3, 5, and 6, so the
predictive context for C’ is {J,, J, Js, ¢ }. In this situation, there
are two simple ways to establish M":

The trivial approach is to simply change the output deck of M€,
so that the model outputs the required variables (if it didn’t
before).

One can add a numerical interpolation step to the process in
order to estimate the variables in C’ from those in C.

In the first case, it should be a fairly straightforward matter to
establish that the model is an ¢-mirror based on the existing
theory of error estimates for FE models [23,24], and one would
expect that ¢ ~ ¢. In the second case, one should be able to use
error estimates from the numerical analysis of interpolation, com-
bined with some reasonable assumptions about the continuity of
the beam profile. One could also bound the errors based on much
coarser assumptions, e.g., one could estimate how far y; could get
from y, and y, before the induced stresses in the beam exceeded
the yield stress. Although the latter approach would likely work, it
would probably yield an ¢ > ¢, so conservative that one would
find the value impractical in terms of model trust. In an exercise
like this, the objective would be to find the lowest bound on &
possible.

Another viewpoint for solving this problem, in which one
wishes to known the ¢ for M'C" where the outputs are the local
stresses ¢; and o4 instead of y, and y, from the validated &-
mirror, is to think of it in the context of transfer learning. Here the
objective would be to use knowledge about the e-mirror M€, and
the structure S, to create a mapping to the unknown stress outputs
for §’C". In a transfer learning setting, the source domain would be
the acceleration outputs from M and S, where the known

Transactions of the ASME
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Fig. 1 Output context change illustration using a cantilever beam, where the structure S is left and the FE
model Mright
S~
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Fig.2 Output context change illustration using cantilever beam. Example of transfer learning problem setup for predict-
ing acceleration outputs at different locations and stress outputs.

information in the target domain is the stress output data from M’,
as shown in Fig. 2. By learning the nonlinear mapping to the stress
outputs from S, it would be possible to find a bound on ¢’

A more interesting problem arises in the case of the extended
definition of context to account for input changes. Suppose C cov-
ered points 1 and 4 at low levels of excitation, and C’ covered
points 2, 3, 5, and 6 at a higher level of excitation; there would be
two different answers to this question, depending on whether M
was linear or nonlinear.

3.2 An Example Concerning Assembly. This example con-
cerns a very important objective of any program of
“virtualization”. Suppose one could validate a model of a full-
scale assembled structure using only test data acquired from sub-
structure testing. The cost savings in the design/production cycle
would be potentially very high. It is important that the “algebra”
of models being developed covers this situation, and this will
entail an understanding of how to model joints and joining
processes.

For the sake of simplicity, consider the case of two substruc-
tures (but note that this is not a real restriction, as the substructure
assembly can be considered recursively). The substructures,
denoted S; and S,, will be assumed to have individual contexts C;
and C,, respectively. It will be assumed that the substructures will
be joined using some technology, which can itself be modeled; in
the general case, one assumes that the joint may itself be a sub-
structure S;. With a small abuse of mathematical notation, the
assembled structure S, will be denoted by,
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For simplicity, it will be assumed that all the responses from
the substructures can still be measured; in this case, one can
denote the new context by C4 = C; D C,. (Here, the D is
largely just a direct sum with some reordering of symbols and
deletion of copies of symbols that appear in the environment
context twice.) In general, one would have to allow for the fact
that the joining process might eliminate a possible measurement
point on the substructure, and thus change the context by
removing a variable.

It is assumed that each substructure S; has a model M¢ associ-
ated with it, and that the models have been validated using test
data from the individual structures, and it has been established
that M,-C is an ¢-mirror in each case. Furthermore, assume that the
joint/joining process has a model M}, and that this model may or
may not have been validated. The model of the assembled struc-
ture is denoted,

My =M, 1&?’ M, ©)

where the appropriate contexts C,4, Cy, and C, have been omitted
to improve clarity of the expression.

The key question is now:

Given the assumptions stated, is it possible to show that there
exists any &4 such that M, is an ¢4-mirror for S, in the context Cy,
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Fig. 3 Encastré beam as sum of two cantilevers and a perfect joint

in the absence of any test data for the assembly S4? If so, then
what is the smallest ¢4 for which this is true?

Of course, one could also attempt to accommodate uncertainty,
and frame the question in terms of o-mirrors (as discussed in
Sec. 2.2). This is the most difficult question so far, but it also
offers the highest returns, if it can be answered. The problem also
depends on whether a validated model for M; is available. For
example, consider the case when the joint is a weld, and that cou-
pon tests have established some of the material properties of the
weld material (perhaps with a high degree of uncertainty). Even
allowing for the fact that the issue is not just about material
properties, one would expect ¢4 to be a monotonically increasing
function of the weld parameter uncertainties. One might also
model the weld as a hybrid model, given that the physics of the
joint are not perfectly understood. From first principles, one might
approach the problem from the same viewpoint as before; one
could make reasonable/trusted assumptions about the real joint
and the model joint, and try to determine how far they can
diverge.

In a general theory, one would hope to prove theorems that
were general, perhaps across particular classes of joint models;
consider, for example, the reasonable conjecture:

Suppose that given models M,-C’ (i=1, 2) are ¢-mirrors for

structures S; in contexts C', then M* = M’ AE,IBJMZC2 is an e,-

mirror for the structure S1§B,Sz in the context C;®C, with

€4 > max(er, &) (where O - ¢4 — max(e,&) > 0 is defined
as the joining deficit).

Finally, it is important to mention another use of the idea of join-
ing models. One might simply wish to represent a complex struc-
ture in terms of substructures, even if there is no physical joining
process involved (a situation that arises in hybrid testing [25]). A
simple example will suffice. Suppose one wished to model a
fixed—fixed beam, and to validate the model. However, suppose
that one had no validation data for the beam, but one did possess a
validated model for a cantilever beam; in fact the cantilever model
had been established as an e-mirror. Clearly, one can regard the
fixed—fixed beam as two cantilevers joined perfectly at their tips,
as depicted in Fig. 3. One could now attempt to answer the ques-
tion above, as to whether joining two copies of the cantilever
beam is an g4-mirror for the fixed—fixed beam. In this case, one
might assume that the joint model M, is perfect; in practice a per-
fect joint when joining two FE models would be accomplished by
seamlessly merging the meshes at the joint so that material
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continuity is as good at the joint as anywhere else. Perfect or
idealized joints of this nature will be denoted by the symbol % .

Even in the case of a perfect joint, one should be aware of a
caveat, and this relates to context. Suppose that the cantilever
model was /inear and had been validated on test data showing
small or moderate deflections of the cantilever tip. When the can-
tilevers are joined, and the cantilever tips become the midpoint of
the beam, the response of the real beam will become nonlinear for
much smaller values of midpoint displacement than the values
measured at the cantilever tip.

It is possible that this problem is achievable via transfer learn-
ing, where the scenario would become multisource transfer learn-
ing [26]. For the encastré beam example the sources would
become the two MIC " (i=1, 2) which are known to be g-mirrors
and the perfect joint model. The challenge here is obtaining the
information about the perfect joint model, and knowing that it is
some form of e-mirror. This in turn could be inferred from multi-
ple perfect joint models that may have been validated for different
geometry and boundary condition scenarios, the idea being that
the mapping for a perfect joint can be learnt from this set. If this is
the case, then the three models could be used as source data in
order to obtain the target deflections for the encastré beam.

Many of the ideas discussed here are covered by the multilevel
framework discussed in Ref. [6], and it may be that the ideas of
reliability and relevance applied in that framework can be adopted
in order to prove hypotheses like those pointed out in this paper.

33 An Example Concerning Structural Health
Monitoring. One of the major problems with data-based Struc-
tural Health Monitoring (SHM) is that data from damaged struc-
tures is scarce. Although damage detection is possible even if one
only has data from the structure of interest, using unsupervised
learning [27], higher-level diagnostics like locating damage or
assessing its type or severity can only be accomplished if one has
data from all the damage states of interest. It is inconceivable that
one might carry out a test program that systematically involved
damaging numbers of high-value structures, so one has to turn
toward modeling as a means of providing the necessary data, as
defined in forward model-driven (SHM) [28,29]—where models
(potentially inferred using inverse methods) are utilized to per-
form forward simulations under various damage scenarios.

The context responses in an SHM problem are usually going to
be features for machine learning. Given the importance of the spe-
cific context, new notation will be introduced; the SHM context
will be denoted F.
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Fig. 4 Structural health monitoring illustration using pressure
vessel and crack models. An example of insertion of a local
damage model into an undamaged structure model.

Assume two ingredients: the first is a validated model of the
undamaged structure of interest $“, denoted by M“". Further
assume a set of data {D¥,, D4} Wthh has been used to validate
the data. Further assume that M"" is an ¢“-mirror, according to
some appropriate metric.

The second ingredient is a local damage model M?, which has
been validated in a context C, using data from coupon tests. The
model may have been updated on the basis of test data and may
well be a hybrid (gray-box) model. Assume that under the circum-
stances M“C! is an ¢-mirror for the context C; according to some
appropriate metric. Finally, we assume that there are no validation
data for the damaged structure $°.

The problem is essentially a joining problem; however, it is of
a specific type and merits a little more new notation. An insertion
model M; is defined as an algorithm or prescription for embedding
the model Mt in M"", in such a way that the result is a model
for $. This differs from the previous joint definitions in that there
is no new physics associated with the join. M, could be a very sim-
ple process, i.e., if the two component models are FE models,
insertion will only really mean harmonizing the two meshes along
the boundary of the join, or using a super-element approach. One
can think of the process as a type of surgery, = i.e., one cuts out a
healthy region of M"" and replaces in with M, as in Fig. 4, and
then harmonizes the meshes at the boundary.'" Clearly this means
that there will need to be compatibility conditions which guaran-
tee some degree of smoothness/continuity across the boundary. '

There is another compatibility condition required here by the
theory; the models M" and M“ must exchange information in such
a way that the dynamics evolves appropriately, i.e., the response
context of C; must overlap with the environmental context of F,
ie, C,NF#¢. In fact, in a general assembly model

M A%MC& it will usually be necessary that C; N C, # ¢ and

C1 N Cy # ¢ (where ¢ represents the empty set here).

As a fairly simple example, consider the problem of modeling a
crack in a pressure vessel (Fig. 4). The undamaged model M""
represents the vessel; the damage model MY, represents a
through crack in a section of plate. By joining the two models,
one can embed a crack of arbitrary location, length or orientation
in the vessel (the process might require some care near the

Surgery is a mathematical technique for building complicated topological
spaces from simpler ones [30]. It may be that the technique can be applied in the
context of joining models.

"!"This is similar to the situation in real-time hybrid testing where coordinate sets
are defined in each domain, which need to be synchronized in order to form the join.
Errors in the synchronization process then give a measure of how imperfect the joint
is.

>Note that this is rather perverse version of surgery, where undamaged tissue is
replaced by damaged.
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Fig. 5 A depiction of the validation problem in the context of
design and the transfer learning problem setup

boundaries). A subtlety here is that the crack model might have
been validated for flat specimens, or for a range of different plate
assumptions (as seen in Fig. 4), in which case a modification
might be needed for compatibility with the curved surface of the
vessel. A more important issue is the following. The behavior of
the structure will usually be modeled using macroscopic physics,
while the detailed crack model will require microscopic physics;
this means that the features have to be chosen very carefully so
that the behavior of the crack is communicated over the boundary
effectively.
The mathematical question of interest is:

Given all of the above, is M©! AE,IB

so, what is the smallest value of ¢ for which this is true?

This will usually be a probabilistic problem where the metrics
are quantities like probability of misclassification or probability of
detection, in which case it will probably be more appropriate to
frame the problem in terms of «-mirrors.

The insertion model M; could also be seen as the output from
transfer learning; there the aim would be to transfer knowledge
from various validated coupon crack models that are a-mirrors
(source) to learn the target predictive function which maps to
some damage feature space in the pressure vessel model. This
would be suited to a multisource transfer learning problem [26].

M€ an e-mirror for §9, and if

3.4 An Example Concerning Design. This is one of the
potential applications of digital twin technology that would pro-
duce large cost savings for industry.

Suppose one has an existing structure S and a context C; further
suppose that a virtualization V¢ = (Mf’ﬁMEC) exists which has
been validated and shown to be an e-mirror for €.

Imagine now that one wished to design a new structure §’, and
thus wanted to know how it would behave either in the old context
C, or in a new context C’ given small changes AM and AS, as
depicted in Fig. 5. In a situation where one wished to avoid build-
ing a prototype for §', there is no direct means of validating a new
visualization V€ = (M'""¢ M'EC), even though this would be
ideal for conducting “what-if” games for the new structure. The
question of immediate interest is:

Given a virtualization V = (M}, M), which is an ¢-mirror
for §<; is V'€ = (Mg,’jc,M’Ec) a mirror for S/° for any values of &
and &), and if so, what are the smallest possible values for which
this true?

As in the context change scenario, the transfer learning
problems would use the information and mapping from the known
e-mirror as the source domain, as shown in Fig. 5. A mapping
would then be inferred for the updated model design, again pro-
viding an estimated bound on ¢'.
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3.5 An Example Concerning Multifidelity Models: Refine-
ment and Relaxation. This section considers the situation when
one has multiple models of the same structure S, in a fixed context
C. Suppose that a model M is an g-mirror for S. A modified
model M'C = Ref[MC] is a refinement of M€, if it is an & -mirror
with ¢ < e. Similarly, A modified model M'C = Rel[M°] is a
relaxation of M, if it is an &-mirror with ¢ > ¢. For finite ele-
ment models, these operations can be carried out by refining or
coarsening the mesh. In this simplest of situations, one might esti-
mate the values of ¢ using analytical error estimates.

This idea is one that can be used in order to answer question (1)
in the introduction. In principle one starts with a model M which
is probably fit-for-purpose and then relaxes the model until one
arrives at M'C with ¢ = ¢;.

Now, it is possible to consider what sort of propositions one
might wish to prove in the theory, i.e., consider the hypothesis:

Assume a model MA = MICl A%MZCZ is an g4-twin for a joined

structure S' g? S2. Further suppose that M is an &;-mirror. Now,

if Mr* = M/ AE/[B, MS” is obtained by refining the first submodel,

then M/* is an ¢, -mirror, with &, < 4.

Another strategy for answering question (1) would then be to
relax submodels in an assembly until the result is marginally fit-
for-purpose.

4 Discussion and Conclusions

This paper proposes some ingredients for a mathematical theory
which would allow a general framework for measuring the fidelity
of computational models and for understanding the consequences
of combining validated models or using them outside their origi-
nal context. Such a theory would be invaluable in the design and
construction of digital twins, because one of the main uses of digi-
tal twins will be to make predictions in circumstances where their
core models have not been explicitly validated, and it will be criti-
cal to obtain estimates of how much models can be trusted when
they are used to extrapolate or generalize, i.e., when they are used
to make inferences about different structures or in different
contexts.

As discussed in the introduction, there are already attempts to
define a unifying framework for model calibration and valida-
tion. In fact, these papers already go into greater detail on spe-
cific technical points than this paper, e.g., they go as far as to
propose a Bayesian framework and define appropriate priors,
likelihoods etc. [6,7]. The techniques proposed can very much
form part of the armory of the more general methodology pro-
posed here. This paper deliberately draws back from some
details because the authors believe that important discussions
are still to be had. For example, it is not agreed within the
broader V&V and uncertainty quantification communities that
probability theory is the correct way to approach model bias, or
epistemic uncertainty in general. For this reason, some of the
definitions given here are independent of whatever uncertainty
theory ultimately dominates in a given context. As long as an
uncertainty theory singles out some most highly indicated model
from the population of possible choices, one can base the analy-
sis on the e-mirror for that single model. For example, in a
Bayesian framework, one can apply the idea to the Maximum a
Posteriori model. Of course, any theorems in the general theory
will have to be proved independently for each uncertainty
specification.

In some ways, the paper could still—despite the intention of the
authors—be considered a wish list. In defense of this accusation,
the arguments are presented in the real belief that the wishes could
come true. The paper presents only the sketchiest arguments as to
how the various “theorems” might be proved, or how the relevant
estimates could be made; this is because the current authors do
not have anything like the complete range of abilities/skills that
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will be needed in order to assemble the theory. In many ways the
paper is intended as a rallying call to the academic community;
the skills needed will come from a range of disciplines: pure and
applied mathematics, physics, computer science (particularly
machine learning), and engineering. The authors here believe that
a framework can come together which is more than the sum of its
parts and that can be of lasting value in the pursuit of effective
computer models and particularly in the construction of digital
twins.
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